
Logics for dependence and independence

Erich Grädel

Nordic Spring School in Logic, Nord9ordeid,  -  May 

Erich Grädel Logics for dependence and independence

Part I: Dependence. Independence, Team Semantics

Motivation and historical remarks

Dependence and independence as atomic properties

Logics of dependence and independence. Team semantics

Expressive power

Erich Grädel Logics for dependence and independence

Logics of dependence and independence

Henkin, Enderton, Walkoe, . . . : partially ordered (or Henkin-) quantifiers

Blass and Gurevich: correspondence to Σ (and thus NP)

Hintikka and Sandu: Independence-friendly (IF) logic with explicit

dependencies of quantifiers on each other

Semantics in terms of games with imperfect information

Claim: Impossibility of model-theoretic (compositional) semantics

never made precise, never proved

Hodges: model-theoretic semantics for IF-logic

Difference to Tarski semantics: a formula is not evaluated against a single

assignment but against a set of assignments

�is kind of semantics is an achievement of independent interest. �e full

potential of this innovation has not yet been fully appreciated.

Erich Grädel Logics for dependence and independence

Logics of dependence and independence

Henkin, Enderton, Walkoe, . . . : partially ordered (or Henkin-) quantifiers

Blass and Gurevich: correspondence to Σ (and thus NP)

Hintikka and Sandu: Independence-friendly (IF) logic with explicit

dependencies of quantifiers on each other

Semantics in terms of games with imperfect information

Claim: Impossibility of model-theoretic (compositional) semantics

never made precise, never proved

Hodges: model-theoretic semantics for IF-logic

Difference to Tarski semantics: a formula is not evaluated against a single

assignment but against a set of assignments

�is kind of semantics is an achievement of independent interest. �e full

potential of this innovation has not yet been fully appreciated.

Erich Grädel Logics for dependence and independence

Logics of dependence and independence

Henkin, Enderton, Walkoe, . . . : partially ordered (or Henkin-) quantifiers

Blass and Gurevich: correspondence to Σ (and thus NP)

Hintikka and Sandu: Independence-friendly (IF) logic with explicit

dependencies of quantifiers on each other

Semantics in terms of games with imperfect information

Claim: Impossibility of model-theoretic (compositional) semantics

never made precise, never proved

Hodges: model-theoretic semantics for IF-logic

Difference to Tarski semantics: a formula is not evaluated against a single

assignment but against a set of assignments

�is kind of semantics is an achievement of independent interest. �e full

potential of this innovation has not yet been fully appreciated.

Erich Grädel Logics for dependence and independence

Logics of dependence and independence

Henkin, Enderton, Walkoe, . . . : partially ordered (or Henkin-) quantifiers

Blass and Gurevich: correspondence to Σ (and thus NP)

Hintikka and Sandu: Independence-friendly (IF) logic with explicit

dependencies of quantifiers on each other

Semantics in terms of games with imperfect information

Claim: Impossibility of model-theoretic (compositional) semantics

never made precise, never proved

Hodges: model-theoretic semantics for IF-logic

Difference to Tarski semantics: a formula is not evaluated against a single

assignment but against a set of assignments

�is kind of semantics is an achievement of independent interest. �e full

potential of this innovation has not yet been fully appreciated.

Erich Grädel Logics for dependence and independence

Henkin quantifiers

φ ∶= (∀x ∃y
∀u ∃v

) Pxyuv

Intuitively, this says that for all x , u there exist y, v such that Pxyuv holds, and
moreover, the choice of y only depends on the value of x and the choice of v
only depends on the value of u.

Precise semantics can be given either in terms of Skolem functions, or in terms

of games of imperfect information.

(A, P) ⊧ φ if there exist functions f , g ∶ A→ A such that P(a, f a, c, gc) holds
for all a, c ∈ A.

Erich Grädel Logics for dependence and independence

Henkin quantifiers

φ ∶= (∀x ∃y
∀u ∃v

) Pxyuv

Intuitively, this says that for all x , u there exist y, v such that Pxyuv holds, and
moreover, the choice of y only depends on the value of x and the choice of v
only depends on the value of u.

Precise semantics can be given either in terms of Skolem functions, or in terms

of games of imperfect information.

(A, P) ⊧ φ if there exist functions f , g ∶ A→ A such that P(a, f a, c, gc) holds
for all a, c ∈ A.

Erich Grädel Logics for dependence and independence

Henkin quantifiers

φ ∶= (∀x ∃y
∀u ∃v

) Pxyuv

Intuitively, this says that for all x , u there exist y, v such that Pxyuv holds, and
moreover, the choice of y only depends on the value of x and the choice of v
only depends on the value of u.

Precise semantics can be given either in terms of Skolem functions, or in terms

of games of imperfect information.

(A, P) ⊧ φ if there exist functions f , g ∶ A→ A such that P(a, f a, c, gc) holds
for all a, c ∈ A.

Erich Grädel Logics for dependence and independence

Henkin quantifiers and NP

Simple formulae with Henkin quantifiers express NP-complete problems

A graph G = (V , E) is -colourable if, and only if,

G ⊧ (∀x ∃y
∀u ∃v

)(y, v ∈ {, , } ∧ (x = u → y = v) ∧ (Exu → y ≠ v))

�eorem (Blass, Gurevich)

Henkin quantfiers over first-order formulae capture NP

Erich Grädel Logics for dependence and independence

Independence-friendly logic

IF-logic is first-order logic where quantifiers are annoted by independencies

Quantification rule: If φ is a formula, x is a variable, andW is a finite set of

variables, then the expressions (∃x/W)φ and (∀x/W)φ are also formulae.

Game-theoretic semantics: In the evaluation game for (Qx/W)φ, the value
for x must be chosen independently from the the values of the variables inW .

At two positions ((Qx/W)φ, s) and (Qx/W)φ, s′) such that s(y) ≠ s′(y)
only for variables inW , the same value for x must be chosen.

Erich Grädel Logics for dependence and independence

IF-logic and existential second-order logic

A graph G = (V , E) admits a perfect matching if, and only if,

G ⊧ ∀x∀y(∃u/{y})(∃v/{x , u})((x = y → u = v) ∧ (u = y → v = x) ∧ Exu)

Skolem semantics. Replace existential quantifiers (∃x/W) by Skolem
functions whose arguments are the variables outsideW .

�e formula for the perfect matching becomes

(∃ f)(∃g)∀x∀y((x = y → f x = g y) ∧ (f x = y → g y = x) ∧ Ex f x)

which is equivalent to (∃ f)∀x(f f x = x ∧ Ex f x)

�eorem. In expressive power, IF-logic is equivalent to existential

second-order logic and thus captures NP on finite structures.

Erich Grädel Logics for dependence and independence

IF-logic and existential second-order logic

A graph G = (V , E) admits a perfect matching if, and only if,

G ⊧ ∀x∀y(∃u/{y})(∃v/{x , u})((x = y → u = v) ∧ (u = y → v = x) ∧ Exu)

Skolem semantics. Replace existential quantifiers (∃x/W) by Skolem
functions whose arguments are the variables outsideW .

�e formula for the perfect matching becomes

(∃ f)(∃g)∀x∀y((x = y → f x = g y) ∧ (f x = y → g y = x) ∧ Ex f x)

which is equivalent to (∃ f)∀x(f f x = x ∧ Ex f x)

�eorem. In expressive power, IF-logic is equivalent to existential

second-order logic and thus captures NP on finite structures.

Erich Grädel Logics for dependence and independence

IF-logic and existential second-order logic

A graph G = (V , E) admits a perfect matching if, and only if,

G ⊧ ∀x∀y(∃u/{y})(∃v/{x , u})((x = y → u = v) ∧ (u = y → v = x) ∧ Exu)

Skolem semantics. Replace existential quantifiers (∃x/W) by Skolem
functions whose arguments are the variables outsideW .

�e formula for the perfect matching becomes

(∃ f)(∃g)∀x∀y((x = y → f x = g y) ∧ (f x = y → g y = x) ∧ Ex f x)

which is equivalent to (∃ f)∀x(f f x = x ∧ Ex f x)

�eorem. In expressive power, IF-logic is equivalent to existential

second-order logic and thus captures NP on finite structures.

Erich Grädel Logics for dependence and independence

IF-logic and existential second-order logic

A graph G = (V , E) admits a perfect matching if, and only if,

G ⊧ ∀x∀y(∃u/{y})(∃v/{x , u})((x = y → u = v) ∧ (u = y → v = x) ∧ Exu)

Skolem semantics. Replace existential quantifiers (∃x/W) by Skolem
functions whose arguments are the variables outsideW .

�e formula for the perfect matching becomes

(∃ f)(∃g)∀x∀y((x = y → f x = g y) ∧ (f x = y → g y = x) ∧ Ex f x)

which is equivalent to (∃ f)∀x(f f x = x ∧ Ex f x)

�eorem. In expressive power, IF-logic is equivalent to existential

second-order logic and thus captures NP on finite structures.

Erich Grädel Logics for dependence and independence

Dependence and independence

What does it mean that “x depends on y” or that “x and y are independent” ?

Compare this to statements of a more common form such as “x divides y”.

To make sense of this we fix a structure A in which the notion of divisibility is

well-defined and an assignment s ∶ {x , y} → A and use Tarski-style semantics
to determine whether A ⊧s “x divides y”.

Dependence and independence are notions of a different kind! �ey manifest

themselves not in single assignments, but only in larger amounts of data:

- sets of plays in a game (e.g. strategies)

- tables or relations

- sets of assignments.

A set of assigments (all with the same domain of variables) is called a team.

Erich Grädel Logics for dependence and independence

Dependence and independence

What does it mean that “x depends on y” or that “x and y are independent” ?

Compare this to statements of a more common form such as “x divides y”.

To make sense of this we fix a structure A in which the notion of divisibility is

well-defined and an assignment s ∶ {x , y} → A and use Tarski-style semantics
to determine whether A ⊧s “x divides y”.

Dependence and independence are notions of a different kind! �ey manifest

themselves not in single assignments, but only in larger amounts of data:

- sets of plays in a game (e.g. strategies)

- tables or relations

- sets of assignments.

A set of assigments (all with the same domain of variables) is called a team.

Erich Grädel Logics for dependence and independence

Dependence and independence

What does it mean that “x depends on y” or that “x and y are independent” ?

Compare this to statements of a more common form such as “x divides y”.

To make sense of this we fix a structure A in which the notion of divisibility is

well-defined and an assignment s ∶ {x , y} → A and use Tarski-style semantics
to determine whether A ⊧s “x divides y”.

Dependence and independence are notions of a different kind! �ey manifest

themselves not in single assignments, but only in larger amounts of data:

- sets of plays in a game (e.g. strategies)

- tables or relations

- sets of assignments.

A set of assigments (all with the same domain of variables) is called a team.

Erich Grädel Logics for dependence and independence

Dependence and independence

What does it mean that “x depends on y” or that “x and y are independent” ?

Compare this to statements of a more common form such as “x divides y”.

To make sense of this we fix a structure A in which the notion of divisibility is

well-defined and an assignment s ∶ {x , y} → A and use Tarski-style semantics
to determine whether A ⊧s “x divides y”.

Dependence and independence are notions of a different kind! �ey manifest

themselves not in single assignments, but only in larger amounts of data:

- sets of plays in a game (e.g. strategies)

- tables or relations

- sets of assignments.

A set of assigments (all with the same domain of variables) is called a team.

Erich Grädel Logics for dependence and independence

Dependence and independence

What does it mean that “x depends on y” or that “x and y are independent” ?

Compare this to statements of a more common form such as “x divides y”.

To make sense of this we fix a structure A in which the notion of divisibility is

well-defined and an assignment s ∶ {x , y} → A and use Tarski-style semantics
to determine whether A ⊧s “x divides y”.

Dependence and independence are notions of a different kind! �ey manifest

themselves not in single assignments, but only in larger amounts of data:

- sets of plays in a game (e.g. strategies)

- tables or relations

- sets of assignments.

A set of assigments (all with the same domain of variables) is called a team.

Erich Grädel Logics for dependence and independence

Logics of dependence and independence

Väänänen: Dependence logic

rather than stating dependencies or independencies as annotations of

quantifiers, treat dependence as an atomic statement

model-theoretic semantics in terms of sets of assignments (team semantics)

Grädel, Väänänen: Independence logic

based on independence rather than dependence

dependence as a special case of a general form of independence

Galliani: Logics based on other dependency properties

Erich Grädel Logics for dependence and independence

Logics of dependence and independence

Väänänen: Dependence logic

rather than stating dependencies or independencies as annotations of

quantifiers, treat dependence as an atomic statement

model-theoretic semantics in terms of sets of assignments (team semantics)

Grädel, Väänänen: Independence logic

based on independence rather than dependence

dependence as a special case of a general form of independence

Galliani: Logics based on other dependency properties

Erich Grädel Logics for dependence and independence

Logics of dependence and independence

Väänänen: Dependence logic

rather than stating dependencies or independencies as annotations of

quantifiers, treat dependence as an atomic statement

model-theoretic semantics in terms of sets of assignments (team semantics)

Grädel, Väänänen: Independence logic

based on independence rather than dependence

dependence as a special case of a general form of independence

Galliani: Logics based on other dependency properties

Erich Grädel Logics for dependence and independence

Dependence atoms

Dependence atoms are expressions =(x , y).

Semantics: Let A be a structure and X a team of assignments s ∶ V → A.

A ⊧X =(x , y) if y depends on x in A and X.

�is means that for all s, s′ ∈ X,
n
⋀
i=

s(xi) = s′(xi) Ô⇒ s(y) = s′(y)

Expanded form of dependence atoms =(x , y) saying that all variables of y
depend on x.

�us dependence is understood as functional dependence, which is the

strongest form of dependence. �e values of x, . . . xn in X determine the
value of y as surely as x and y determine x + y and x ⋅ y in elementary
arithmetic. Weaker forms of dependence are definable from that.

Erich Grädel Logics for dependence and independence

Dependence atoms

Dependence atoms are expressions =(x , y).

Semantics: Let A be a structure and X a team of assignments s ∶ V → A.

A ⊧X =(x , y) if y depends on x in A and X.

�is means that for all s, s′ ∈ X,
n
⋀
i=

s(xi) = s′(xi) Ô⇒ s(y) = s′(y)

Expanded form of dependence atoms =(x , y) saying that all variables of y
depend on x.

�us dependence is understood as functional dependence, which is the

strongest form of dependence. �e values of x, . . . xn in X determine the
value of y as surely as x and y determine x + y and x ⋅ y in elementary
arithmetic. Weaker forms of dependence are definable from that.

Erich Grädel Logics for dependence and independence

Armstrong’s axioms for dependence

() =(x , x)
Anything is functionally dependent of itself.

() If =(x , y), x ⊆ x′ and y′ ⊆ y, then =(x′, y′).
Functional dependence is preserved by increasing input data and

decreasing output data.

() If =(x , y) and x′ and y′ are permutations of x and y, then =(x′, y′).
Functional dependence does not look at the order of the variables.

() If =(x , y) and =(y, z), then =(x , z).
Functional dependences can be transitively composed.

Completeness: If T is a finite set of dependence atoms of the form =(x , y) for
various x and y, then =(x , y) follows from T according to Armstrong’s rules if,
and only if, every team that satisfies T also satisfies =(x , y).

Erich Grädel Logics for dependence and independence

Independence: informal discussion

Independence is a more complicated notion than dependence.

Strongest form of logical independence of x and y:

Every conceivable pattern of values for (x , y) occurs.

Knowing one of x and y gives no information about the other.

Caution. Probability theory has its own concept of independence: two

random variables are independent if observing one does not affect the

probabilities of the other. Logical independence is in harmony with

probabilistic independence, but does not pay attention to how o�en a pattern

occurs.

Erich Grädel Logics for dependence and independence

Example for independence

Suppose you want gather experimental data by throwing balls of various size

and masses from the Leaning Tower of Pisa to observe how size and mass

influence the time of descent. Setting up the experiment you may want to

make sure that

�e size of the ball is independent from its mass

How to make sure of this? Vary sizes and masses so that if one size is chosen

for one mass it is also chosen for all other masses (and vice versa). �is would

eliminate any dependence between size and mass and the experiment would

genuinely tell us something relevant about the time of descent.

Erich Grädel Logics for dependence and independence

Example for independence

Suppose you want gather experimental data by throwing balls of various size

and masses from the Leaning Tower of Pisa to observe how size and mass

influence the time of descent. Setting up the experiment you may want to

make sure that

�e size of the ball is independent from its mass

How to make sure of this? Vary sizes and masses so that if one size is chosen

for one mass it is also chosen for all other masses (and vice versa). �is would

eliminate any dependence between size and mass and the experiment would

genuinely tell us something relevant about the time of descent.

Erich Grädel Logics for dependence and independence

Independence atoms: simple case

Definition. A team X satisfies the atom x � y if

(∀s, s′ ∈ X)(∃s′′ ∈ X)(s′′(x) = s(x) ∧ s′′(y) = s′(y))

Suppose you know X and you know that s is some assignment in X.
You want to gather information about s(y). What you know is that
s(y) ∈ {a ∶ a = s′(y) for some s′ ∈ X}.

Suppose that I tell you s(x) where x � y.
You cannot infer anything new about s(y). Indeed, for all potential values a
for s(y) there is an assignment s′′ ∈ X with s′′(x) = s(x) and s′′(y) = a.

Erich Grädel Logics for dependence and independence

Independence atoms: simple case

Definition. A team X satisfies the atom x � y if

(∀s, s′ ∈ X)(∃s′′ ∈ X)(s′′(x) = s(x) ∧ s′′(y) = s′(y))

Suppose you know X and you know that s is some assignment in X.
You want to gather information about s(y). What you know is that
s(y) ∈ {a ∶ a = s′(y) for some s′ ∈ X}.

Suppose that I tell you s(x) where x � y.
You cannot infer anything new about s(y). Indeed, for all potential values a
for s(y) there is an assignment s′′ ∈ X with s′′(x) = s(x) and s′′(y) = a.

Erich Grädel Logics for dependence and independence

Independence atoms: simple case

Definition. A team X satisfies the atom x � y if

(∀s, s′ ∈ X)(∃s′′ ∈ X)(s′′(x) = s(x) ∧ s′′(y) = s′(y))

Suppose you know X and you know that s is some assignment in X.
You want to gather information about s(y). What you know is that
s(y) ∈ {a ∶ a = s′(y) for some s′ ∈ X}.

Suppose that I tell you s(x) where x � y.
You cannot infer anything new about s(y). Indeed, for all potential values a
for s(y) there is an assignment s′′ ∈ X with s′′(x) = s(x) and s′′(y) = a.

Erich Grädel Logics for dependence and independence

Constants

Consider a team of data obtained by throwing objects of the same size but

different masses from the leaning tower of Pisa.

Galileo: �e time of descent is independent of the mass.

Special theory of relativity:

Einstein: �e speed of light is independent of the observer’s state of motion.

A special case of total independence is when one of the variables is a constant !

Proposition. A constant variable is independent from every other variable

including itself: =(x) ⇐⇒ x � x

Erich Grädel Logics for dependence and independence

Constants

Consider a team of data obtained by throwing objects of the same size but

different masses from the leaning tower of Pisa.

Galileo: �e time of descent is independent of the mass.

Special theory of relativity:

Einstein: �e speed of light is independent of the observer’s state of motion.

A special case of total independence is when one of the variables is a constant !

Proposition. A constant variable is independent from every other variable

including itself: =(x) ⇐⇒ x � x

Erich Grädel Logics for dependence and independence

Constants

Consider a team of data obtained by throwing objects of the same size but

different masses from the leaning tower of Pisa.

Galileo: �e time of descent is independent of the mass.

Special theory of relativity:

Einstein: �e speed of light is independent of the observer’s state of motion.

A special case of total independence is when one of the variables is a constant !

Proposition. A constant variable is independent from every other variable

including itself: =(x) ⇐⇒ x � x

Erich Grädel Logics for dependence and independence

Constants

Consider a team of data obtained by throwing objects of the same size but

different masses from the leaning tower of Pisa.

Galileo: �e time of descent is independent of the mass.

Special theory of relativity:

Einstein: �e speed of light is independent of the observer’s state of motion.

A special case of total independence is when one of the variables is a constant !

Proposition. A constant variable is independent from every other variable

including itself: =(x) ⇐⇒ x � x

Erich Grädel Logics for dependence and independence

Axioms for independence

() If x � y then y � x (Symmetry Rule)

() If x � x then x � y (Constancy Rule)

Completeness: If T is a finite set of independence atoms of the form u � v
then x � y follows from T via these two rules if, and only if, every team that
satisfies T also satisfies x � y.

Proof. Suppose T ⊧ x � y. Derive x � y from T .

Let V be the variables in T and U = {z ∈ V ∶ z � z ∈ T}.
If T contains x � y or y � x, or if U contains x or y, we are done.

If not we construct a team X = X ∪ X that satisfies T , but not x � y. Set

Xσ = {s ∶ V → (U ∪ {, }) ∶ s(z) = z for z ∈ U , s(x) = s(y) = σ}

Erich Grädel Logics for dependence and independence

Axioms for independence

() If x � y then y � x (Symmetry Rule)

() If x � x then x � y (Constancy Rule)

Completeness: If T is a finite set of independence atoms of the form u � v
then x � y follows from T via these two rules if, and only if, every team that
satisfies T also satisfies x � y.

Proof. Suppose T ⊧ x � y. Derive x � y from T .

Let V be the variables in T and U = {z ∈ V ∶ z � z ∈ T}.
If T contains x � y or y � x, or if U contains x or y, we are done.

If not we construct a team X = X ∪ X that satisfies T , but not x � y. Set

Xσ = {s ∶ V → (U ∪ {, }) ∶ s(z) = z for z ∈ U , s(x) = s(y) = σ}

Erich Grädel Logics for dependence and independence

Axioms for independence

() If x � y then y � x (Symmetry Rule)

() If x � x then x � y (Constancy Rule)

Completeness: If T is a finite set of independence atoms of the form u � v
then x � y follows from T via these two rules if, and only if, every team that
satisfies T also satisfies x � y.

Proof. Suppose T ⊧ x � y. Derive x � y from T .

Let V be the variables in T and U = {z ∈ V ∶ z � z ∈ T}.
If T contains x � y or y � x, or if U contains x or y, we are done.

If not we construct a team X = X ∪ X that satisfies T , but not x � y. Set

Xσ = {s ∶ V → (U ∪ {, }) ∶ s(z) = z for z ∈ U , s(x) = s(y) = σ}

Erich Grädel Logics for dependence and independence

Completeness of simple independence axioms

X ⊧ T : Let (u � v) ∈ T .

- if u or v is in U then it is constant in X and hence X ⊧ u � v
- if {u, v} ∩ (U ∪ {x , y}) = ∅, then all values occur for u, v in X
and hence X ⊧ u � v

- otherwise we can assume that u = x and v ∈ V ∖ (U ∩ {x , y}).
For any s, s′ ∈ X, let s′′(z) ∶= s(z) for z ≠ v and s′′(v) ∶= s′(v).
�en s′′ ∈ X and hence X ⊧ u � v.

X /⊧ x � y:
�ere exist s, s ∈ X with s(x) =  and s′(y) = , but there is no s′′ ∈ X with
s′′(x) =  and s′′(y) = .

Erich Grädel Logics for dependence and independence

Independence atoms: general case

�e independence atom x � y, and also its extension to independency atoms
x � y on tuples of variables, are special forms of a more general atom

x �z y

saying that the variables x are completely independent from y for any constant
value of z.

Definition. A team X satisfies the atom x �z y if for any pair of assignments
s, s′ ∈ X with s(z) = s′(z) there is a third assignment s′′ ∈ X with
- s′′(z) = s(z) = s′(z)
- s′′(x) = s(x)
- s′′(y) = s′(y).

Erich Grädel Logics for dependence and independence

Dependence versus independence

How do dependence atoms and independence atoms compare with respect to

expressive power?

Lemma =(z, x) logically implies x �z y

Lemma x �z y logically implies =(z, x ∩ y)

Corollary =(z, x) ⇐⇒ x �z x

So dependence is a special case of (the general form of) independence

Erich Grädel Logics for dependence and independence

Dependence versus independence

How do dependence atoms and independence atoms compare with respect to

expressive power?

Lemma =(z, x) logically implies x �z y

Lemma x �z y logically implies =(z, x ∩ y)

Corollary =(z, x) ⇐⇒ x �z x

So dependence is a special case of (the general form of) independence

Erich Grädel Logics for dependence and independence

Dependence versus independence

How do dependence atoms and independence atoms compare with respect to

expressive power?

Lemma =(z, x) logically implies x �z y

Lemma x �z y logically implies =(z, x ∩ y)

Corollary =(z, x) ⇐⇒ x �z x

So dependence is a special case of (the general form of) independence

Erich Grädel Logics for dependence and independence

Dependence versus independence

How do dependence atoms and independence atoms compare with respect to

expressive power?

Lemma =(z, x) logically implies x �z y

Lemma x �z y logically implies =(z, x ∩ y)

Corollary =(z, x) ⇐⇒ x �z x

So dependence is a special case of (the general form of) independence

Erich Grädel Logics for dependence and independence

Dependence versus independence

How do dependence atoms and independence atoms compare with respect to

expressive power?

Lemma =(z, x) logically implies x �z y

Lemma x �z y logically implies =(z, x ∩ y)

Corollary =(z, x) ⇐⇒ x �z x

So dependence is a special case of (the general form of) independence

Erich Grädel Logics for dependence and independence

Inclusion, exclusion, and all that

Besides dependence and independence, there are other interesting atomic

properties of teams. One source of such properties is database dependency

theory.

Inclusion dependencies:

⊧X (x ⊆ y) ∶⇐⇒ (∀s ∈ X)(∃s′ ∈ X)(s(x) = s′(y))

Exclusion dependencies:

⊧X (x ∣ y) ∶⇐⇒ (∀s ∈ X)(∀s′ ∈ X)(s(x) ≠ s′(y))

Equiextension:

⊧X (x & y) ∶⇐⇒ {s(x) ∶ s ∈ X} = {s(y) ∶ s ∈ X}

Erich Grädel Logics for dependence and independence

Inclusion, exclusion, and all that

Besides dependence and independence, there are other interesting atomic

properties of teams. One source of such properties is database dependency

theory.

Inclusion dependencies:

⊧X (x ⊆ y) ∶⇐⇒ (∀s ∈ X)(∃s′ ∈ X)(s(x) = s′(y))

Exclusion dependencies:

⊧X (x ∣ y) ∶⇐⇒ (∀s ∈ X)(∀s′ ∈ X)(s(x) ≠ s′(y))

Equiextension:

⊧X (x & y) ∶⇐⇒ {s(x) ∶ s ∈ X} = {s(y) ∶ s ∈ X}

Erich Grädel Logics for dependence and independence

Inclusion, exclusion, and all that

Besides dependence and independence, there are other interesting atomic

properties of teams. One source of such properties is database dependency

theory.

Inclusion dependencies:

⊧X (x ⊆ y) ∶⇐⇒ (∀s ∈ X)(∃s′ ∈ X)(s(x) = s′(y))

Exclusion dependencies:

⊧X (x ∣ y) ∶⇐⇒ (∀s ∈ X)(∀s′ ∈ X)(s(x) ≠ s′(y))

Equiextension:

⊧X (x & y) ∶⇐⇒ {s(x) ∶ s ∈ X} = {s(y) ∶ s ∈ X}

Erich Grädel Logics for dependence and independence

Inclusion, exclusion, and all that

Besides dependence and independence, there are other interesting atomic

properties of teams. One source of such properties is database dependency

theory.

Inclusion dependencies:

⊧X (x ⊆ y) ∶⇐⇒ (∀s ∈ X)(∃s′ ∈ X)(s(x) = s′(y))

Exclusion dependencies:

⊧X (x ∣ y) ∶⇐⇒ (∀s ∈ X)(∀s′ ∈ X)(s(x) ≠ s′(y))

Equiextension:

⊧X (x & y) ∶⇐⇒ {s(x) ∶ s ∈ X} = {s(y) ∶ s ∈ X}

Erich Grädel Logics for dependence and independence

Logics of dependence and independence

Combine the atoms stating dependencies and/or independencies with the

common logical operators, such as connectives and quantifiers, to obtain

full-fledged logics for reasoning about dependence and independence.

Dependence logic: FO + dependence atoms =(x , y)

Independence logic: FO + independence atoms x �z y

Inclusion logic: FO + inclusion atoms x ⊆ y

and so on.

All these logics require team semantics.

What precisely does it mean that, A ⊧X ψ(x) ?

Erich Grädel Logics for dependence and independence

Logics of dependence and independence

Combine the atoms stating dependencies and/or independencies with the

common logical operators, such as connectives and quantifiers, to obtain

full-fledged logics for reasoning about dependence and independence.

Dependence logic: FO + dependence atoms =(x , y)

Independence logic: FO + independence atoms x �z y

Inclusion logic: FO + inclusion atoms x ⊆ y

and so on.

All these logics require team semantics.

What precisely does it mean that, A ⊧X ψ(x) ?

Erich Grädel Logics for dependence and independence

Team semantics for first-order logic

A ⊧X ψ(y) ⇐⇒ A ⊧s ψ(y) for all s ∈ X

A ⊧X ψ ∧ φ ∶⇐⇒ for all s ∈ X, A ⊧s ψ and A ⊧s φ

A ⊧X ψ ∨ φ ∶⇐⇒ for all s ∈ X, A ⊧s ψ or A ⊧s φ

A ⊧X ∃yψ ∶⇐⇒ for all s ∈ X there exist a ∈ Awith A ⊧s[y↦a] ψ

A ⊧X ∀yψ ∶⇐⇒ for all s ∈ X and all a ∈ A, A ⊧s[y↦a] ψ

Erich Grädel Logics for dependence and independence

Team semantics for first-order logic

A ⊧X ψ(y) ⇐⇒ A ⊧s ψ(y) for all s ∈ X

A ⊧X ψ ∧ φ ∶⇐⇒ for all s ∈ X, A ⊧s ψ and A ⊧s φ

A ⊧X ψ ∨ φ ∶⇐⇒ for all s ∈ X, A ⊧s ψ or A ⊧s φ

A ⊧X ∃yψ ∶⇐⇒ for all s ∈ X there exist a ∈ Awith A ⊧s[y↦a] ψ

A ⊧X ∀yψ ∶⇐⇒ for all s ∈ X and all a ∈ A, A ⊧s[y↦a] ψ

Erich Grädel Logics for dependence and independence

Team semantics: inductive definition

For ψ(y) ∈ FO ∶ A ⊧X ψ(y) ⇐⇒ A ⊧s ψ(y) for all s ∈ X

A ⊧X ψ ∧ φ ∶⇐⇒ for all s ∈ X, A ⊧s ψ and A ⊧s φ

A ⊧X ψ ∨ φ ∶⇐⇒ for all s ∈ X, A ⊧s ψ or A ⊧s φ

A ⊧X ∃yψ ∶⇐⇒ for all s ∈ X there exist a ∈ Awith A ⊧s[y↦a] ψ

A ⊧X ∀yψ ∶⇐⇒ for all s ∈ X and all a ∈ A, A ⊧s[y↦a] ψ

Erich Grädel Logics for dependence and independence

Team semantics: inductive definition

For ψ(y) ∈ FO ∶ A ⊧X ψ(y) ⇐⇒ A ⊧s ψ(y) for all s ∈ X

A ⊧X ψ ∧ φ ∶⇐⇒ A ⊧X ψ and A ⊧X φ

A ⊧X ψ ∨ φ ∶⇐⇒ for all s ∈ X, A ⊧s ψ or A ⊧s φ

A ⊧X ∃yψ ∶⇐⇒ for all s ∈ X there exist a ∈ Awith A ⊧s[y↦a] ψ

A ⊧X ∀yψ ∶⇐⇒ for all s ∈ X and all a ∈ A, A ⊧s[y↦a] ψ

Erich Grädel Logics for dependence and independence

Team semantics: inductive definition

For ψ(y) ∈ FO ∶ A ⊧X ψ(y) ⇐⇒ A ⊧s ψ(y) for all s ∈ X

A ⊧X ψ ∧ φ ∶⇐⇒ A ⊧X ψ and A ⊧X φ

A ⊧X ψ ∨ φ ∶⇐⇒ X = Y ∪ Z such that A ⊧Y ψ and A ⊧Z φ

A ⊧X ∃yψ ∶⇐⇒ for all s ∈ X there exist a ∈ Awith A ⊧s[y↦a] ψ

A ⊧X ∀yψ ∶⇐⇒ for all s ∈ X and all a ∈ A, A ⊧s[y↦a] ψ

Notice that (φ ∨ φ) is, in general, not equivalent to φ

An example from dependence logic:

=(y)means that the value of y is constant in the given team
=(y) ∨ =(y)means that y takes at most two values in the given team

Erich Grädel Logics for dependence and independence

Team semantics: inductive definition

For ψ(y) ∈ FO ∶ A ⊧X ψ(y) ⇐⇒ A ⊧s ψ(y) for all s ∈ X

A ⊧X ψ ∧ φ ∶⇐⇒ A ⊧X ψ and A ⊧X φ

A ⊧X ψ ∨ φ ∶⇐⇒ X = Y ∪ Z such that A ⊧Y ψ and A ⊧Z φ

A ⊧X ∃yψ ∶⇐⇒ for all s ∈ X there exist a ∈ Awith A ⊧s[y↦a] ψ

A ⊧X ∀yψ ∶⇐⇒ for all s ∈ X and all a ∈ A, A ⊧s[y↦a] ψ

Notice that (φ ∨ φ) is, in general, not equivalent to φ

An example from dependence logic:

=(y)means that the value of y is constant in the given team
=(y) ∨ =(y)means that y takes at most two values in the given team

Erich Grädel Logics for dependence and independence

Team semantics: inductive definition

For ψ(y) ∈ FO ∶ A ⊧X ψ(y) ⇐⇒ A ⊧s ψ(y) for all s ∈ X

A ⊧X ψ ∧ φ ∶⇐⇒ A ⊧X ψ and A ⊧X φ

A ⊧X ψ ∨ φ ∶⇐⇒ X = Y ∪ Z such that A ⊧Y ψ and A ⊧Z φ

A ⊧X ∃yψ ∶⇐⇒ for all s ∈ X there exist a ∈ Awith A ⊧s[y↦a] ψ

A ⊧X ∀yψ ∶⇐⇒ for all s ∈ X and all a ∈ A, A ⊧s[y↦a] ψ

Notice that (φ ∨ φ) is, in general, not equivalent to φ

An example from dependence logic:

=(y)means that the value of y is constant in the given team
=(y) ∨ =(y)means that y takes at most two values in the given team

Erich Grädel Logics for dependence and independence

Team semantics: inductive definition

For ψ(y) ∈ FO ∶ A ⊧X ψ(y) ⇐⇒ A ⊧s ψ(y) for all s ∈ X

A ⊧X ψ ∧ φ ∶⇐⇒ A ⊧X ψ and A ⊧X φ

A ⊧X ψ ∨ φ ∶⇐⇒ X = Y ∪ Z such that A ⊧Y ψ and A ⊧Z φ

A ⊧X ∃yψ ∶⇐⇒ ∃F ∶ X → P(A) ∖ {∅} such that A ⊧X[y↦F] ψ

A ⊧X ∀yψ ∶⇐⇒ for all s ∈ X and all a ∈ A, A ⊧s[y↦a] ψ

Choose (for every s ∈ X) an arbitrary non-empty set of witnesses for ∃x . . .
rather than just a single witness: lax semantics as opposed to strict semantics.

For FO and dependence logic the difference is immaterial

For stronger logics, only lax semantics guarantees the locality principle:

A ⊧X φ ⇐⇒ A ⊧X↾free(φ) φ

Erich Grädel Logics for dependence and independence

Team semantics: inductive definition

For ψ(y) ∈ FO ∶ A ⊧X ψ(y) ⇐⇒ A ⊧s ψ(y) for all s ∈ X

A ⊧X ψ ∧ φ ∶⇐⇒ A ⊧X ψ and A ⊧X φ

A ⊧X ψ ∨ φ ∶⇐⇒ X = Y ∪ Z such that A ⊧Y ψ and A ⊧Z φ

A ⊧X ∃yψ ∶⇐⇒ ∃F ∶ X → P(A) ∖ {∅} such that A ⊧X[y↦F] ψ

A ⊧X ∀yψ ∶⇐⇒ for all s ∈ X and all a ∈ A, A ⊧s[y↦a] ψ

Choose (for every s ∈ X) an arbitrary non-empty set of witnesses for ∃x . . .
rather than just a single witness: lax semantics as opposed to strict semantics.

For FO and dependence logic the difference is immaterial

For stronger logics, only lax semantics guarantees the locality principle:

A ⊧X φ ⇐⇒ A ⊧X↾free(φ) φ

Erich Grädel Logics for dependence and independence

Team semantics: inductive definition

For ψ(y) ∈ FO ∶ A ⊧X ψ(y) ⇐⇒ A ⊧s ψ(y) for all s ∈ X

A ⊧X ψ ∧ φ ∶⇐⇒ A ⊧X ψ and A ⊧X φ

A ⊧X ψ ∨ φ ∶⇐⇒ X = Y ∪ Z such that A ⊧Y ψ and A ⊧Z φ

A ⊧X ∃yψ ∶⇐⇒ ∃F ∶ X → P(A) ∖ {∅} such that A ⊧X[y↦F] ψ

A ⊧X ∀yψ ∶⇐⇒ A ⊧X[y↦A] ψ

For sentences we define: A ⊧ ψ ∶⇐⇒ A ⊧{∅} ψ

Notice that we cannot reasonably replace {∅} by ∅ since the empty team
satisfies all formulae: A ⊧∅ ψ for all ψ

Erich Grädel Logics for dependence and independence

Team semantics: inductive definition

For ψ(y) ∈ FO ∶ A ⊧X ψ(y) ⇐⇒ A ⊧s ψ(y) for all s ∈ X

A ⊧X ψ ∧ φ ∶⇐⇒ A ⊧X ψ and A ⊧X φ

A ⊧X ψ ∨ φ ∶⇐⇒ X = Y ∪ Z such that A ⊧Y ψ and A ⊧Z φ

A ⊧X ∃yψ ∶⇐⇒ ∃F ∶ X → P(A) ∖ {∅} such that A ⊧X[y↦F] ψ

A ⊧X ∀yψ ∶⇐⇒ A ⊧X[y↦A] ψ

For sentences we define: A ⊧ ψ ∶⇐⇒ A ⊧{∅} ψ

Notice that we cannot reasonably replace {∅} by ∅ since the empty team
satisfies all formulae: A ⊧∅ ψ for all ψ

Erich Grädel Logics for dependence and independence

Example: Defining -SAT in dependence logic

Represent an instance φ = ⋀m
i=(Xi ∨ Xi ∨ Xi) of -SAT by a team

Zφ = {(i , j, X , σ) ∶ in clause i at position j, the variable X appears with parity σ}

Example: �e formula φ = (X ∨ ¬X ∨ X) ∧ (X ∨ X ∨ ¬X), is described
by the team

clause position variable parity

  X +

  X -

  X +

  X +

  X +

  X -

Proposition. φ is satisfiable if, and only if, the team Zφ is a model of

=(clause,position) ∨ =(clause, position) ∨ =(variable,parity)

Erich Grädel Logics for dependence and independence

Example: Defining -SAT in dependence logic

Represent an instance φ = ⋀m
i=(Xi ∨ Xi ∨ Xi) of -SAT by a team

Zφ = {(i , j, X , σ) ∶ in clause i at position j, the variable X appears with parity σ}

Example: �e formula φ = (X ∨ ¬X ∨ X) ∧ (X ∨ X ∨ ¬X), is described
by the team

clause position variable parity

  X +

  X -

  X +

  X +

  X +

  X -

Proposition. φ is satisfiable if, and only if, the team Zφ is a model of

=(clause,position) ∨ =(clause, position) ∨ =(variable,parity)

Erich Grädel Logics for dependence and independence

From team semantics to Tarski semantics

A team X of assignments s ∶ V → A can be represented as a relation
rel(X) ⊆ A∣V ∣.

�e translation to Tarski semantics requires that we go to existential

second-order logic Σ.

Proposition. Every formula ψ(x, . . . , xn) in dependence or independence
logic, with vocabulary τ, can be translated into a Σ-sentence ψ∗ of vocabulary
τ ∪ {R} such that

A ⊧X ψ(x) ⇐⇒ (A, rel(X)) ⊧ ψ∗

Indeed this holds for any extension of FO by atomic properties of teams that

are first-order expressible (on the relation describing the team).

For sentences, dependence logic, and thus also independence logic coincides

in expressive power with Σ.

Erich Grädel Logics for dependence and independence

From team semantics to Tarski semantics

A team X of assignments s ∶ V → A can be represented as a relation
rel(X) ⊆ A∣V ∣.

�e translation to Tarski semantics requires that we go to existential

second-order logic Σ.

Proposition. Every formula ψ(x, . . . , xn) in dependence or independence
logic, with vocabulary τ, can be translated into a Σ-sentence ψ∗ of vocabulary
τ ∪ {R} such that

A ⊧X ψ(x) ⇐⇒ (A, rel(X)) ⊧ ψ∗

Indeed this holds for any extension of FO by atomic properties of teams that

are first-order expressible (on the relation describing the team).

For sentences, dependence logic, and thus also independence logic coincides

in expressive power with Σ.

Erich Grädel Logics for dependence and independence

�e translation from dependence logic into Σ

Construct translation ψ(x, . . . , xn) ↦ ψ∗(R) such that

A ⊧X ψ(x) ⇐⇒ (A, rel(X)) ⊧ ψ∗

- first-order literals α(x) are translated into ∀x(Rx → α(x))
- dependency atoms =(xi , . . . , xik , xi) are translated into

∀x∀y(Rx ∧ Ry ∧
k
⋀
j=

(xi j = yi j) → (xi = yi))

- (ψ(x) ∧ φ(x))∗ ∶= ψ∗(R) ∧ φ∗(R)
- (ψ(x) ∨ φ(x))∗ ∶= ∃S∃T(∀x(Rx → (Sx ∨ Tx)) ∧ ψ∗(S) ∧ φ∗(T))
- (∀y ψ)∗ ∶= ∃S(∀x∀y(Rx → Sxy) ∧ ψ∗(S))
- (∃y ψ)∗ ∶= ∃S(∀x∃y(Rx → Sxy) ∧ ψ∗(S))

Erich Grädel Logics for dependence and independence

�e translation from dependence logic into Σ

Construct translation ψ(x, . . . , xn) ↦ ψ∗(R) such that

A ⊧X ψ(x) ⇐⇒ (A, rel(X)) ⊧ ψ∗

- first-order literals α(x) are translated into ∀x(Rx → α(x))

- dependency atoms =(xi , . . . , xik , xi) are translated into

∀x∀y(Rx ∧ Ry ∧
k
⋀
j=

(xi j = yi j) → (xi = yi))

- (ψ(x) ∧ φ(x))∗ ∶= ψ∗(R) ∧ φ∗(R)
- (ψ(x) ∨ φ(x))∗ ∶= ∃S∃T(∀x(Rx → (Sx ∨ Tx)) ∧ ψ∗(S) ∧ φ∗(T))
- (∀y ψ)∗ ∶= ∃S(∀x∀y(Rx → Sxy) ∧ ψ∗(S))
- (∃y ψ)∗ ∶= ∃S(∀x∃y(Rx → Sxy) ∧ ψ∗(S))

Erich Grädel Logics for dependence and independence

�e translation from dependence logic into Σ

Construct translation ψ(x, . . . , xn) ↦ ψ∗(R) such that

A ⊧X ψ(x) ⇐⇒ (A, rel(X)) ⊧ ψ∗

- first-order literals α(x) are translated into ∀x(Rx → α(x))
- dependency atoms =(xi , . . . , xik , xi) are translated into

∀x∀y(Rx ∧ Ry ∧
k
⋀
j=

(xi j = yi j) → (xi = yi))

- (ψ(x) ∧ φ(x))∗ ∶= ψ∗(R) ∧ φ∗(R)
- (ψ(x) ∨ φ(x))∗ ∶= ∃S∃T(∀x(Rx → (Sx ∨ Tx)) ∧ ψ∗(S) ∧ φ∗(T))
- (∀y ψ)∗ ∶= ∃S(∀x∀y(Rx → Sxy) ∧ ψ∗(S))
- (∃y ψ)∗ ∶= ∃S(∀x∃y(Rx → Sxy) ∧ ψ∗(S))

Erich Grädel Logics for dependence and independence

�e translation from dependence logic into Σ

Construct translation ψ(x, . . . , xn) ↦ ψ∗(R) such that

A ⊧X ψ(x) ⇐⇒ (A, rel(X)) ⊧ ψ∗

- first-order literals α(x) are translated into ∀x(Rx → α(x))
- dependency atoms =(xi , . . . , xik , xi) are translated into

∀x∀y(Rx ∧ Ry ∧
k
⋀
j=

(xi j = yi j) → (xi = yi))

- (ψ(x) ∧ φ(x))∗ ∶= ψ∗(R) ∧ φ∗(R)

- (ψ(x) ∨ φ(x))∗ ∶= ∃S∃T(∀x(Rx → (Sx ∨ Tx)) ∧ ψ∗(S) ∧ φ∗(T))
- (∀y ψ)∗ ∶= ∃S(∀x∀y(Rx → Sxy) ∧ ψ∗(S))
- (∃y ψ)∗ ∶= ∃S(∀x∃y(Rx → Sxy) ∧ ψ∗(S))

Erich Grädel Logics for dependence and independence

�e translation from dependence logic into Σ

Construct translation ψ(x, . . . , xn) ↦ ψ∗(R) such that

A ⊧X ψ(x) ⇐⇒ (A, rel(X)) ⊧ ψ∗

- first-order literals α(x) are translated into ∀x(Rx → α(x))
- dependency atoms =(xi , . . . , xik , xi) are translated into

∀x∀y(Rx ∧ Ry ∧
k
⋀
j=

(xi j = yi j) → (xi = yi))

- (ψ(x) ∧ φ(x))∗ ∶= ψ∗(R) ∧ φ∗(R)
- (ψ(x) ∨ φ(x))∗ ∶= ∃S∃T(∀x(Rx → (Sx ∨ Tx)) ∧ ψ∗(S) ∧ φ∗(T))

- (∀y ψ)∗ ∶= ∃S(∀x∀y(Rx → Sxy) ∧ ψ∗(S))
- (∃y ψ)∗ ∶= ∃S(∀x∃y(Rx → Sxy) ∧ ψ∗(S))

Erich Grädel Logics for dependence and independence

�e translation from dependence logic into Σ

Construct translation ψ(x, . . . , xn) ↦ ψ∗(R) such that

A ⊧X ψ(x) ⇐⇒ (A, rel(X)) ⊧ ψ∗

- first-order literals α(x) are translated into ∀x(Rx → α(x))
- dependency atoms =(xi , . . . , xik , xi) are translated into

∀x∀y(Rx ∧ Ry ∧
k
⋀
j=

(xi j = yi j) → (xi = yi))

- (ψ(x) ∧ φ(x))∗ ∶= ψ∗(R) ∧ φ∗(R)
- (ψ(x) ∨ φ(x))∗ ∶= ∃S∃T(∀x(Rx → (Sx ∨ Tx)) ∧ ψ∗(S) ∧ φ∗(T))
- (∀y ψ)∗ ∶= ∃S(∀x∀y(Rx → Sxy) ∧ ψ∗(S))

- (∃y ψ)∗ ∶= ∃S(∀x∃y(Rx → Sxy) ∧ ψ∗(S))

Erich Grädel Logics for dependence and independence

�e translation from dependence logic into Σ

Construct translation ψ(x, . . . , xn) ↦ ψ∗(R) such that

A ⊧X ψ(x) ⇐⇒ (A, rel(X)) ⊧ ψ∗

- first-order literals α(x) are translated into ∀x(Rx → α(x))
- dependency atoms =(xi , . . . , xik , xi) are translated into

∀x∀y(Rx ∧ Ry ∧
k
⋀
j=

(xi j = yi j) → (xi = yi))

- (ψ(x) ∧ φ(x))∗ ∶= ψ∗(R) ∧ φ∗(R)
- (ψ(x) ∨ φ(x))∗ ∶= ∃S∃T(∀x(Rx → (Sx ∨ Tx)) ∧ ψ∗(S) ∧ φ∗(T))
- (∀y ψ)∗ ∶= ∃S(∀x∀y(Rx → Sxy) ∧ ψ∗(S))
- (∃y ψ)∗ ∶= ∃S(∀x∃y(Rx → Sxy) ∧ ψ∗(S))

Erich Grädel Logics for dependence and independence

Expressive power of dependence logic: formulae

Downwards Closure: If A ⊧X ψ and Y ⊆ X, then A ⊧Y ψ

Hence, the sentences ψ∗ have to be downwards monotone:
If (A, R) ⊧ ψ∗ and S ⊆ R then (A, S) ⊧ ψ∗.

�us dependence logic is a strict fragment of existential second-order logic.

�eorem (Kontinen and Väänänen )

�e expressive power of formulae ψ(x, . . . , xn) of dependence logic is
precisely that of existential second-order sentences with the predicate for the

team occurring only negatively.

While sentences of dependence logic can express all NP-properties of finite

structures, only the downwards closed NP-properties of teams are definable by

open formulae of dependence logic.

Erich Grädel Logics for dependence and independence

Expressive power of dependence logic: formulae

Downwards Closure: If A ⊧X ψ and Y ⊆ X, then A ⊧Y ψ

Hence, the sentences ψ∗ have to be downwards monotone:
If (A, R) ⊧ ψ∗ and S ⊆ R then (A, S) ⊧ ψ∗.

�us dependence logic is a strict fragment of existential second-order logic.

�eorem (Kontinen and Väänänen )

�e expressive power of formulae ψ(x, . . . , xn) of dependence logic is
precisely that of existential second-order sentences with the predicate for the

team occurring only negatively.

While sentences of dependence logic can express all NP-properties of finite

structures, only the downwards closed NP-properties of teams are definable by

open formulae of dependence logic.

Erich Grädel Logics for dependence and independence

Expressive power of dependence logic: formulae

Downwards Closure: If A ⊧X ψ and Y ⊆ X, then A ⊧Y ψ

Hence, the sentences ψ∗ have to be downwards monotone:
If (A, R) ⊧ ψ∗ and S ⊆ R then (A, S) ⊧ ψ∗.

�us dependence logic is a strict fragment of existential second-order logic.

�eorem (Kontinen and Väänänen )

�e expressive power of formulae ψ(x, . . . , xn) of dependence logic is
precisely that of existential second-order sentences with the predicate for the

team occurring only negatively.

While sentences of dependence logic can express all NP-properties of finite

structures, only the downwards closed NP-properties of teams are definable by

open formulae of dependence logic.

Erich Grädel Logics for dependence and independence

Expressive power of dependence logic: formulae

Downwards Closure: If A ⊧X ψ and Y ⊆ X, then A ⊧Y ψ

Hence, the sentences ψ∗ have to be downwards monotone:
If (A, R) ⊧ ψ∗ and S ⊆ R then (A, S) ⊧ ψ∗.

�us dependence logic is a strict fragment of existential second-order logic.

�eorem (Kontinen and Väänänen )

�e expressive power of formulae ψ(x, . . . , xn) of dependence logic is
precisely that of existential second-order sentences with the predicate for the

team occurring only negatively.

While sentences of dependence logic can express all NP-properties of finite

structures, only the downwards closed NP-properties of teams are definable by

open formulae of dependence logic.

Erich Grädel Logics for dependence and independence

�e translation from independence logic into Σ

Construct translation ψ(x, . . . , xn) ↦ ψ∗(R) such that

A ⊧X ψ(x) ⇐⇒ (A, rel(X)) ⊧ ψ∗

- first-order literals α(x) are translated into ∀x(Rx → α(x))
- independence atoms xi �xk x j are translated into

∀x∀y(Rx ∧ Ry ∧ (xk = yk) → ∃z(Rz ∧ (zk = xk) ∧ (zi = xi) ∧ (z j = y j)))

- (ψ(x) ∧ φ(x))∗ ∶= ψ∗(R) ∧ φ∗(R)
- (ψ(x) ∨ φ(x))∗ ∶= ∃S∃T(∀x(Rx↔ (Sx ∨ Tx)) ∧ ψ∗(S) ∧ φ∗(T))
- (∀y ψ)∗ ∶= ∃S(∀x∀y(Rx↔ Sxy) ∧ ψ∗(S))
- (∃y ψ)∗ ∶= ∃S(∀x∃y(Rx↔ Sxy) ∧ ψ∗(S))

Erich Grädel Logics for dependence and independence

Expressive power of independence logic

Contrary to dependence logic, inclusion logic and independence logic are not

downwards closed.

For instance x � y is not preserved under subteams.

Inclusion logic is closed under union. Independence logic is not.

● Exclusion logic ≡ dependence logic.

● Inclusion logic and dependence logic are incomparable.

● FO + inclusion + exclusion ≡ independence logic.

● Independence logic coincides with Σ also wrt the

expressive power of open formulae.

Corollary. All NP-properties of teams are definable in independence logic.

Erich Grädel Logics for dependence and independence

Expressive power of independence logic

Contrary to dependence logic, inclusion logic and independence logic are not

downwards closed.

For instance x � y is not preserved under subteams.

Inclusion logic is closed under union. Independence logic is not.

● Exclusion logic ≡ dependence logic.

● Inclusion logic and dependence logic are incomparable.

● FO + inclusion + exclusion ≡ independence logic.

● Independence logic coincides with Σ also wrt the

expressive power of open formulae.

Corollary. All NP-properties of teams are definable in independence logic.

Erich Grädel Logics for dependence and independence

Part II: Model-Checking Games

Reachability games and model-checking games for first-order logic

Second-order reachability games

Model-checking games for logics with team semantics

Examples

Complexity

Deterministic versus nondeterministic strategies

Erich Grädel Logics for dependence and independence

Reachability games

Two-player games with perfect information given by a game graph

G = (V , E), V = V ∪ V ∪ T , E ⊆ V × V

Player  moves from positions v ∈ V,
Player  moves from v ∈ V,
T is the set of terminal nodes.

Moves are along edges.

Hence plays are finite or infinite paths through the graph

Winning condition Win ⊆ T : at a terminal position v ∈ T ,
Player  has won if v ∈Win and Player  has won if v ∈ T ∖Win.
Infinite plays are draws.

Let us assume that game graphs are acyclic and of finite depth.

Hence all plays are finite.

Erich Grädel Logics for dependence and independence

Reachability games

Two-player games with perfect information given by a game graph

G = (V , E), V = V ∪ V ∪ T , E ⊆ V × V

Player  moves from positions v ∈ V,
Player  moves from v ∈ V,
T is the set of terminal nodes.

Moves are along edges.

Hence plays are finite or infinite paths through the graph

Winning condition Win ⊆ T : at a terminal position v ∈ T ,
Player  has won if v ∈Win and Player  has won if v ∈ T ∖Win.
Infinite plays are draws.

Let us assume that game graphs are acyclic and of finite depth.

Hence all plays are finite.

Erich Grädel Logics for dependence and independence

Winning regions and winning strategies

Winning regions

Wσ ∶= {v ∈ V ∶ Player σ has a winning strategy from position v}

A (nondeterministic) winning strategy of Player  for G andWin with winning
regionW is a subgraph S = (W , F) ⊆ (V , E) such that

() if v ∈ V ∩W then vF ≠ ∅,

() if v ∈ V ∩W then vF = vE

() W ∩ T ⊆Win.

All plays that start at some v ∈W and are consistent with S reach a winning
position w ∈Win.

Erich Grädel Logics for dependence and independence

Winning regions and winning strategies

Winning regions

Wσ ∶= {v ∈ V ∶ Player σ has a winning strategy from position v}

A (nondeterministic) winning strategy of Player  for G andWin with winning
regionW is a subgraph S = (W , F) ⊆ (V , E) such that

() if v ∈ V ∩W then vF ≠ ∅,

() if v ∈ V ∩W then vF = vE

() W ∩ T ⊆Win.

All plays that start at some v ∈W and are consistent with S reach a winning
position w ∈Win.

Erich Grädel Logics for dependence and independence

Complexity of reachability games

Given a reachability game game (G ,Win) on a finite game graph, we can
compute in linear time O(∣V ∣ + ∣E∣)

winning regionsW,W

winning strategies for both players onW andW

Associated decision problem:

G ∶= {(G , v) ∶ Player  has winning strategy for G from position v}

�eorem. G is P-complete.

Erich Grädel Logics for dependence and independence

Model-Checking Games

�emodel checking problem for a logic L (with classical Tarski-semantics)

Given: structure A

formula ψ(x) ∈ L
assignment s ∶ free(ψ) → A

Question: A ⊧s ψ ?

Reduce model checking problem A ⊧s ψ to strategy problem for model
checking game G(A,ψ, s), played by
– Falsifier (also called Player ), and

– Verifier (also called Player ), such that

A ⊧s ψ ⇐⇒ Verifier has winning strategy for G(A,ψ, s)

Ô⇒ Model checking via construction of winning strategies

Erich Grädel Logics for dependence and independence

Model-Checking Games

�emodel checking problem for a logic L (with classical Tarski-semantics)

Given: structure A

formula ψ(x) ∈ L
assignment s ∶ free(ψ) → A

Question: A ⊧s ψ ?

Reduce model checking problem A ⊧s ψ to strategy problem for model
checking game G(A,ψ, s), played by
– Falsifier (also called Player ), and

– Verifier (also called Player ), such that

A ⊧s ψ ⇐⇒ Verifier has winning strategy for G(A,ψ, s)

Ô⇒ Model checking via construction of winning strategies

Erich Grädel Logics for dependence and independence

Model-Checking Games

�emodel checking problem for a logic L (with classical Tarski-semantics)

Given: structure A

formula ψ(x) ∈ L
assignment s ∶ free(ψ) → A

Question: A ⊧s ψ ?

Reduce model checking problem A ⊧s ψ to strategy problem for model
checking game G(A,ψ, s), played by
– Falsifier (also called Player ), and

– Verifier (also called Player ), such that

A ⊧s ψ ⇐⇒ Verifier has winning strategy for G(A,ψ, s)

Ô⇒ Model checking via construction of winning strategies

Erich Grädel Logics for dependence and independence

Model-checking game for first-order logic

�e game G(A,ψ) for a structure A and ψ(x) ∈ FO.

Positions: (φ, s) φ is a subformula of ψ and s ∶ free(φ) → A

Verifier moves:

(φ ∨ φ, s) → (φi , s ↾ free(φi)) (i = , )
(∃xφ, s) → (φ, s[x ↦ a]) (a ∈ A)

Falsifier moves

(φ ∧ φ, s) → (φi , s ↾ free(φi)) (i = , )
(∀xφ, s) → (φ, s[x ↦ a]) (a ∈ A)

Terminal positions: φ atomic / negated atomic

Verifier

Falsifier
wins at (φ, s) ⇐⇒ A

⊧s
/⊧s

φ

Erich Grädel Logics for dependence and independence

Model-checking game for first-order logic

�e game G(A,ψ) for a structure A and ψ(x) ∈ FO.

Positions: (φ, s) φ is a subformula of ψ and s ∶ free(φ) → A

Verifier moves:

(φ ∨ φ, s) → (φi , s ↾ free(φi)) (i = , )
(∃xφ, s) → (φ, s[x ↦ a]) (a ∈ A)

Falsifier moves

(φ ∧ φ, s) → (φi , s ↾ free(φi)) (i = , )
(∀xφ, s) → (φ, s[x ↦ a]) (a ∈ A)

Terminal positions: φ atomic / negated atomic

Verifier

Falsifier
wins at (φ, s) ⇐⇒ A

⊧s
/⊧s

φ

Erich Grädel Logics for dependence and independence

Model-checking game for first-order logic

�e game G(A,ψ) for a structure A and ψ(x) ∈ FO.

Positions: (φ, s) φ is a subformula of ψ and s ∶ free(φ) → A

Verifier moves:

(φ ∨ φ, s) → (φi , s ↾ free(φi)) (i = , )
(∃xφ, s) → (φ, s[x ↦ a]) (a ∈ A)

Falsifier moves

(φ ∧ φ, s) → (φi , s ↾ free(φi)) (i = , )
(∀xφ, s) → (φ, s[x ↦ a]) (a ∈ A)

Terminal positions: φ atomic / negated atomic

Verifier

Falsifier
wins at (φ, s) ⇐⇒ A

⊧s
/⊧s

φ

Erich Grädel Logics for dependence and independence

Model-checking game for first-order logic

�e game G(A,ψ) for a structure A and ψ(x) ∈ FO.

Positions: (φ, s) φ is a subformula of ψ and s ∶ free(φ) → A

Verifier moves:

(φ ∨ φ, s) → (φi , s ↾ free(φi)) (i = , )
(∃xφ, s) → (φ, s[x ↦ a]) (a ∈ A)

Falsifier moves

(φ ∧ φ, s) → (φi , s ↾ free(φi)) (i = , )
(∀xφ, s) → (φ, s[x ↦ a]) (a ∈ A)

Terminal positions: φ atomic / negated atomic

Verifier

Falsifier
wins at (φ, s) ⇐⇒ A

⊧s
/⊧s

φ

Erich Grädel Logics for dependence and independence

Second-order reachability games

Game graph: G = (V ,V,V, T , I, E)
I: set of initial positions
T : set of terminal positions

Winning condition for Player : Win ⊆ P(T).

For algorithmic purposes, we assume that Win is given by a compact

description and that it can be decided in P whether a given set U ⊆ T
belongs to Win.

Does Player  have a (nondeterministic) strategy such that the set of terminal

positions that are reachable by a play from I that is consistent with the strategy
belongs to Win ?

Erich Grädel Logics for dependence and independence

Second-order reachability games

Game graph: G = (V ,V,V, T , I, E)
I: set of initial positions
T : set of terminal positions

Winning condition for Player : Win ⊆ P(T).

For algorithmic purposes, we assume that Win is given by a compact

description and that it can be decided in P whether a given set U ⊆ T
belongs to Win.

Does Player  have a (nondeterministic) strategy such that the set of terminal

positions that are reachable by a play from I that is consistent with the strategy
belongs to Win ?

Erich Grädel Logics for dependence and independence

Consistent winning strategies

Game graph: G = (V ,V,V, T , I, E)

Winning condition for Player : Win ⊆ P(T).

A consistent winning strategy of Player  for G and Win is a pair
S = (W , F) ⊆ (V , E) with F ⊆ (W ×W) ∩ E such that

() W is the set of nodes that are reachable from I via edges in F

() if v ∈ V ∩W then vF ≠ ∅

() if v ∈ V ∩W then vF = vE

() W ∩ T ∈Win.

Notice that () implies I ⊆W .

Erich Grädel Logics for dependence and independence

Complexity

�eorem. �e problem whether a given game graph G with a compact
decription for Win admits a consistent winning strategy for Player , is

NP-complete.

�e problem is obviously in NP: guess a subgraph, and verify that it is a

consistent winning strategy.

NP-hardness by reduction from SAT. Given a CNF-formula ψ consider the
obvious game G(ψ), where Player  can move from the initial position ψ to
clauses, and Player  from clauses to their literals, with

T ∶= {(C ,Y) ∶ C is a clause of ψ,Y ∈ C}
Win ∶= {U ⊆ T ∶ U contains no conflicting pair (C ,Y), (C′,Y)}

Player  has a consistent winning strategy for G(ψ) ⇐⇒ ψ is satisfiable

Erich Grädel Logics for dependence and independence

Complexity

�eorem. �e problem whether a given game graph G with a compact
decription for Win admits a consistent winning strategy for Player , is

NP-complete.

�e problem is obviously in NP: guess a subgraph, and verify that it is a

consistent winning strategy.

NP-hardness by reduction from SAT. Given a CNF-formula ψ consider the
obvious game G(ψ), where Player  can move from the initial position ψ to
clauses, and Player  from clauses to their literals, with

T ∶= {(C ,Y) ∶ C is a clause of ψ,Y ∈ C}
Win ∶= {U ⊆ T ∶ U contains no conflicting pair (C ,Y), (C′,Y)}

Player  has a consistent winning strategy for G(ψ) ⇐⇒ ψ is satisfiable

Erich Grädel Logics for dependence and independence

Complexity

�eorem. �e problem whether a given game graph G with a compact
decription for Win admits a consistent winning strategy for Player , is

NP-complete.

�e problem is obviously in NP: guess a subgraph, and verify that it is a

consistent winning strategy.

NP-hardness by reduction from SAT. Given a CNF-formula ψ consider the
obvious game G(ψ), where Player  can move from the initial position ψ to
clauses, and Player  from clauses to their literals, with

T ∶= {(C ,Y) ∶ C is a clause of ψ,Y ∈ C}
Win ∶= {U ⊆ T ∶ U contains no conflicting pair (C ,Y), (C′,Y)}

Player  has a consistent winning strategy for G(ψ) ⇐⇒ ψ is satisfiable

Erich Grädel Logics for dependence and independence

Model-checking game for logics with team semantics

Consider FO together with a collection of atomic properties of teams.

Appropriate model checking games are obtained as follows:

Take precisely the same model-checking game as for FO with

Tarski-semantics but insist that distinct occurrences of the same

subformula are represented by distinct nodes.

Impose consistency conditions on the admissible strategies .

�e resulting games G(A,ψ), where Verifier may use only consistent
strategies, can be viewed as games of imperfect information.

Erich Grädel Logics for dependence and independence

Model-checking game for logics with team semantics

Consider FO together with a collection of atomic properties of teams.

Appropriate model checking games are obtained as follows:

Take precisely the same model-checking game as for FO with

Tarski-semantics but insist that distinct occurrences of the same

subformula are represented by distinct nodes.

Impose consistency conditions on the admissible strategies .

�e resulting games G(A,ψ), where Verifier may use only consistent
strategies, can be viewed as games of imperfect information.

Erich Grädel Logics for dependence and independence

Games with imperfect information

�ere are different views of games with imperfect information.

Explicitly given information sets: Players have only partial information I(v)
of the current position v, and may thus, according to their knowledge, be in
any position in the information set I = {w ∶ I(w) = I(v)}. As a consequence,
strategies may depend only on current information I(v) and must assign the
same action to all nodes in the same information set.

Explicit restrictions on strategies: Do not make the information explicit, but

directly define restrictions on the strategies available for the players. For this

purpose it is o�en useful to identify strategies with the sets of plays that are

consistent with them.

Here, we use the second approach.

Erich Grädel Logics for dependence and independence

Games with imperfect information

�ere are different views of games with imperfect information.

Explicitly given information sets: Players have only partial information I(v)
of the current position v, and may thus, according to their knowledge, be in
any position in the information set I = {w ∶ I(w) = I(v)}. As a consequence,
strategies may depend only on current information I(v) and must assign the
same action to all nodes in the same information set.

Explicit restrictions on strategies: Do not make the information explicit, but

directly define restrictions on the strategies available for the players. For this

purpose it is o�en useful to identify strategies with the sets of plays that are

consistent with them.

Here, we use the second approach.

Erich Grädel Logics for dependence and independence

Games with imperfect information

�ere are different views of games with imperfect information.

Explicitly given information sets: Players have only partial information I(v)
of the current position v, and may thus, according to their knowledge, be in
any position in the information set I = {w ∶ I(w) = I(v)}. As a consequence,
strategies may depend only on current information I(v) and must assign the
same action to all nodes in the same information set.

Explicit restrictions on strategies: Do not make the information explicit, but

directly define restrictions on the strategies available for the players. For this

purpose it is o�en useful to identify strategies with the sets of plays that are

consistent with them.

Here, we use the second approach.

Erich Grädel Logics for dependence and independence

Second-order reachability games for model checking

Let (V ,V,V, T , E) be the game graph of a model-checking game G(A,ψ).

Recall that V = {(φ, s) ∶ φ is a subformula of ψ, s ∶ free(φ) → A}

Teams defined by strategies: For any subsetW ⊆ V and any subformula φ of ψ

Team(W , φ) ∶= {s ∶ (φ, s) ∈W}

For a strategy S = (W , F), let Team(S , φ) ∶= Team(W , φ)

Second-order reachability condition Win ⊆ P(T):
T = {(φ, s) ∈ V ∶ φ is an atomic or negated atomic subformula of ψ}
Win ∶= {U ⊆ T ∶ A ⊧Team(U ,φ) φ for every atomic/negated atomic φ}.

Erich Grädel Logics for dependence and independence

Second-order reachability games for model checking

Let (V ,V,V, T , E) be the game graph of a model-checking game G(A,ψ).

Recall that V = {(φ, s) ∶ φ is a subformula of ψ, s ∶ free(φ) → A}

Teams defined by strategies: For any subsetW ⊆ V and any subformula φ of ψ

Team(W , φ) ∶= {s ∶ (φ, s) ∈W}

For a strategy S = (W , F), let Team(S , φ) ∶= Team(W , φ)

Second-order reachability condition Win ⊆ P(T):
T = {(φ, s) ∈ V ∶ φ is an atomic or negated atomic subformula of ψ}
Win ∶= {U ⊆ T ∶ A ⊧Team(U ,φ) φ for every atomic/negated atomic φ}.

Erich Grädel Logics for dependence and independence

Second-order reachability games for model checking

Let (V ,V,V, T , E) be the game graph of a model-checking game G(A,ψ).

Recall that V = {(φ, s) ∶ φ is a subformula of ψ, s ∶ free(φ) → A}

Teams defined by strategies: For any subsetW ⊆ V and any subformula φ of ψ

Team(W , φ) ∶= {s ∶ (φ, s) ∈W}

For a strategy S = (W , F), let Team(S , φ) ∶= Team(W , φ)

Second-order reachability condition Win ⊆ P(T):
T = {(φ, s) ∈ V ∶ φ is an atomic or negated atomic subformula of ψ}
Win ∶= {U ⊆ T ∶ A ⊧Team(U ,φ) φ for every atomic/negated atomic φ}.

Erich Grädel Logics for dependence and independence

Second-order reachability games for model checking

For a model-checking game G(A,ψ) = (V ,V,V, T , E) with the second-order
reachability condition Win we thus have:

A consistent winning strategy for Player  (Verifier) with winning regionW is

a pair S = (W , F) ⊆ (V , E) with F ⊆ (W ×W) ∩ E such that

() if v ∈ V ∩W , then vF ≠ ∅

() if v ∈ V ∩W then vF = vE

() for every atomic or negated atomic formula φ, A ⊧Team(S ,φ) φ where
Team(S , φ) = {s ∶ (φ, s) ∈W}

Notice that condition () refers to the entire set of terminal positions that are

reachable by plays that are consistent with the strategy.

Erich Grädel Logics for dependence and independence

Correctness of the model checking games

�e consistency condition for winning strategies translates from the atomic

formulae to all positions of the game.

If S = (W , F) is a consistent winning strategy for G(A,ψ) then, for all
subformulae φ of ψ we have that A ⊧Team(S ,φ) φ.

�eorem.

A ⊧X ψ ⇐⇒ Verifier has a consistent winning strategy S for G(A,ψ)
with Team(S ,ψ) = X.

Erich Grädel Logics for dependence and independence

Correctness of the model checking games

�e consistency condition for winning strategies translates from the atomic

formulae to all positions of the game.

If S = (W , F) is a consistent winning strategy for G(A,ψ) then, for all
subformulae φ of ψ we have that A ⊧Team(S ,φ) φ.

�eorem.

A ⊧X ψ ⇐⇒ Verifier has a consistent winning strategy S for G(A,ψ)
with Team(S ,ψ) = X.

Erich Grädel Logics for dependence and independence

�e other player

A consistent winning strategy for Falsifier is defined dually, with

Win′ ∶= {U ⊆ T ∶ A ⊧Team(U ,φ) ¬φ for every atomic/negated atomic φ}.

Notice that Win′ need not be the complement of Win.

�eorem.

A ⊧Y ψ¬ ⇐⇒ Falsifier has a consistent winning strategy S′ for G(A,ψ)
with Team(S′,ψ) = Y .

Here ψ¬ is the formula in negation normal form, corresponding to the
negation of ψ.

Notice that logics with team semantics do not have the tertium non datur.

Erich Grädel Logics for dependence and independence

Complexity

Recall that the problem whether a given game graph G with a compact
description for Win admits a consistent winning strategy for Player , is

NP-complete.

�e size of a model checking game G(A,ψ) on a finite structure A is bounded
by ∣ψ∣ ⋅ ∣A∣width(ψ).

�eorem. Let L be any extension of first-order logic by atomic formulae on
teams that can be evaluated in polynomial time. �en the model-checking

problem for L on finite structures is in N. For formulae of bounded
width, the model-checking problem is in NP.

Erich Grädel Logics for dependence and independence

Complexity

Recall that the problem whether a given game graph G with a compact
description for Win admits a consistent winning strategy for Player , is

NP-complete.

�e size of a model checking game G(A,ψ) on a finite structure A is bounded
by ∣ψ∣ ⋅ ∣A∣width(ψ).

�eorem. Let L be any extension of first-order logic by atomic formulae on
teams that can be evaluated in polynomial time. �en the model-checking

problem for L on finite structures is in N. For formulae of bounded
width, the model-checking problem is in NP.

Erich Grädel Logics for dependence and independence

Complexity

�eorem. �e problem to decide, given a finite structure A, a team X and a
formula ψ in dependence logic, whether A ⊧X ψ, is N-complete. �is
also holds when A and X are fixed, in fact even in the case where A is just the
set {, } and X = {∅}.

�e same complexity results hold for independence logic, and logics using

inclusion, exclusion, and/or equiextension atoms.

Constancy logic. Fragment of dependence logic, using only dependence

atoms of form =(y).

�e model checking problem for constancy logic is P-complete.

Erich Grädel Logics for dependence and independence

Complexity

�eorem. �e problem to decide, given a finite structure A, a team X and a
formula ψ in dependence logic, whether A ⊧X ψ, is N-complete. �is
also holds when A and X are fixed, in fact even in the case where A is just the
set {, } and X = {∅}.

�e same complexity results hold for independence logic, and logics using

inclusion, exclusion, and/or equiextension atoms.

Constancy logic. Fragment of dependence logic, using only dependence

atoms of form =(y).

�e model checking problem for constancy logic is P-complete.

Erich Grädel Logics for dependence and independence

Example: -colourability

X(G) = {s ∶ (edge,node)↦ (e , u) ∶ e is an edge of G and u ∈ e}

ψ(edge,node) ∶= ∃colour((=(colour) ∨ =(colour) ∨ =(colour))∧
=(node,colour) ∧ =(edge,colour,node)).

Claim. G is -colourable ⇐⇒ V ∪ E ⊧X(G) ψ(edge,node)

A consistent winning strategy S = (W , F) with Team(S ,ψ) = X(G) selects, for
every assignment s ∶ (edge,node)↦ (e , u) at least one colour c(s).

First conjunct: at most three colours are used

Second conjunct: the colour of (e , u) only depends on the node u

Final conjunct: the edge and the colour determine the node, i.e. a different

colour is assigned to (e , u) and (e , v) for every edge e = {u, v}.

Erich Grädel Logics for dependence and independence

Example: -colourability

X(G) = {s ∶ (edge,node)↦ (e , u) ∶ e is an edge of G and u ∈ e}

ψ(edge,node) ∶= ∃colour((=(colour) ∨ =(colour) ∨ =(colour))∧
=(node,colour) ∧ =(edge,colour,node)).

Claim. G is -colourable ⇐⇒ V ∪ E ⊧X(G) ψ(edge,node)

A consistent winning strategy S = (W , F) with Team(S ,ψ) = X(G) selects, for
every assignment s ∶ (edge,node)↦ (e , u) at least one colour c(s).

First conjunct: at most three colours are used

Second conjunct: the colour of (e , u) only depends on the node u

Final conjunct: the edge and the colour determine the node, i.e. a different

colour is assigned to (e , u) and (e , v) for every edge e = {u, v}.

Erich Grädel Logics for dependence and independence

Independence versus Henkin quantifiers

Independence atoms can be used to describe semantics of Henkin quantifiers.

φ ∶= (∀x ∃y
∀u ∃v

) Pxyuv

(A, P) ⊧ φ if there exist functions f , g ∶ A→ A such that A ⊧ P(a, f a, c, gc)
for all a, c ∈ A.

ψ ∶= ∀x∃y∀u∃v(xy�uv ∧ Pxyuv)

Game-theoretic semantics: (A, P) ⊧ ψ if there exist functions
F ∶ A→ P(A) ∖ {∅} and G ∶ A× A× A→ P(A) ∖ {∅} such that the team

XFG = {s ∶ (x , y, u, v) ↦ (a, b, c, d) ∶ b ∈ F(a) and d ∈ G(a, b, c)}

satisfies xy�uv and Pxyuv

Claim. �e two formulae are equivalent.

Erich Grädel Logics for dependence and independence

Independence versus Henkin quantifiers

Independence atoms can be used to describe semantics of Henkin quantifiers.

φ ∶= (∀x ∃y
∀u ∃v

) Pxyuv

(A, P) ⊧ φ if there exist functions f , g ∶ A→ A such that A ⊧ P(a, f a, c, gc)
for all a, c ∈ A.

ψ ∶= ∀x∃y∀u∃v(xy�uv ∧ Pxyuv)

Game-theoretic semantics: (A, P) ⊧ ψ if there exist functions
F ∶ A→ P(A) ∖ {∅} and G ∶ A× A× A→ P(A) ∖ {∅} such that the team

XFG = {s ∶ (x , y, u, v) ↦ (a, b, c, d) ∶ b ∈ F(a) and d ∈ G(a, b, c)}

satisfies xy�uv and Pxyuv

Claim. �e two formulae are equivalent.

Erich Grädel Logics for dependence and independence

Independence versus Henkin quantifiers

φ ∶= (∀x ∃y
∀u ∃v

) Pxyuv ⊧ ψ ∶= ∀x∃y∀u∃v(xy�uv ∧ Pxyuv)

From Skolem functions f , g for φ we immediately get a consistent winning
strategy for ψ, witnessed by F(a) ∶= { f a} and G(a, b, c) ∶= {gc}.

�e team XFG then consists of all assignments (a, f a, c, gc) which clearly
satisfies Pxyuv and also satisfies the independence atom xy�uv since v is
constant for any fixed value for u.

Erich Grädel Logics for dependence and independence

Independence versus Henkin quantifiers

ψ ∶= ∀x∃y∀u∃v(xy�uv ∧ Pxyuv) ⊧ φ ∶= (∀x ∃y
∀u ∃v

) Pxyuv

Given a consistent winning strategy for ψ on A, witnessed by F and G,
define Skolem functions for φ via a choice function ε on P(A).
Set f a ∶= εF(a) and gc ∶= ε(⋃a∈AG(a, f a, c)).

Claim. P(a, f a, c, gc) for all a, c ∈ A.

Prove that, for all a, c, the assignment (a, f a, c, gc) belongs to XFG .

() Given a, c, there exists a′ ∈ A such that gc ∈ G(a′, f a′, c); hence
(a′, f a′, c, gc) ∈ XFG .

() (a, f a, c, d) ∈ XFG for all d ∈ G(a, f a, c).

() By the independence atom we infer that XFG also contains (a, f a, c, gc).

Erich Grädel Logics for dependence and independence

Kernels in directed graphs

Represent a directed graph by a team E with attributes (source,target).

Kernel of G: set K of nodes such that no edges go from K to K and every node
outside K is dominated by a node in K.

Existence of a kernel is an NP-complete problem.

Kernel is not downwards closed, hence not expressible in dependence logic.

A formula with dependence, exclusion, and inclusion:

ψ(source,target) =∃c∀x∃y∀x′∃y′(=(c) ∧ =(x , y) ∧ =(x′y′)∧
(x = x′ → y = y′) ∧ (φ ∨ ϑ), where

φ ∶= (x = source→(y = c ∧ (source ∣ target) ∧ (y′ = c ∨ x′ ⊂ target)))
ϑ ∶= (x = source→y ≠ c)

Claim. V ⊧E ψ(source,target) ⇐⇒ (V , E) has a kernel

Erich Grädel Logics for dependence and independence

Kernels in directed graphs

ψ(source,target) = ∃c∀x∃y∀x′∃y′(=(c) ∧ =(x , y) ∧ =(x′y′)∧
(x = x′ → y = y′) ∧ (φ ∨ ϑ)

�ere is constant c and two functions f ∶ x ↦ y and f ′ ∶ x′ ↦ y′, which are
actually the same, such that the resulting team can be split into two subsets one

of which satisfies φ and the other satisfies ϑ.

Idea: K = f −(c), and E split into the team E of edges originating in K and the
team E of edges originating in its complement.

φ ∶= (x = source→ (y = c ∧ (source ∣ target) ∧ (y′ = c ∨ x′ ⊂ target)))
ϑ ∶= (x = source→ y ≠ c)

No edge in E has its target in K, and that all nodes outside K are the target of
an edge in E.
Erich Grädel Logics for dependence and independence

Exclusion is expressible with simple independence

Lemma. (Galliani) x ∣ y ≡ ∃z(x ⊆ z ∧ y ≠ z ∧ y � z)

Suppose that A ⊧X x ∣ y. �en B ∶= {s(y) ∶ s ∈ X} ⊊ A. We define a consistent
winning strategy S showing that A ⊧X ∃z(x ⊆ z ∧ y ≠ x ∧ y � z) by permiting,
for all s ∈ X, all values in A∖ B for z.

Team(S , x ⊆ z) = C × (A∖ B) for some C with C ∩ B = ∅. �is obviously
satisfies x ⊆ z.

Team(S , y ≠ z) = Team(S , y � z) = B × (A∖ B).
�is obviously satisfies both y ≠ z and y � z.

Erich Grädel Logics for dependence and independence

Exclusion is expressible with simple independence

Lemma. (Galliani) x ∣ y ≡ ∃z(x ⊆ z ∧ y ≠ z ∧ y � z)

Suppose that A ⊧X x ∣ y. �en B ∶= {s(y) ∶ s ∈ X} ⊊ A. We define a consistent
winning strategy S showing that A ⊧X ∃z(x ⊆ z ∧ y ≠ x ∧ y � z) by permiting,
for all s ∈ X, all values in A∖ B for z.

Team(S , x ⊆ z) = C × (A∖ B) for some C with C ∩ B = ∅. �is obviously
satisfies x ⊆ z.

Team(S , y ≠ z) = Team(S , y � z) = B × (A∖ B).
�is obviously satisfies both y ≠ z and y � z.

Erich Grädel Logics for dependence and independence

Exclusion is expressible with simple independence

Lemma. (Galliani) x ∣ y ≡ ∃z(x ⊆ z ∧ y ≠ z ∧ y � z)

Conversely suppose that S is a consistent winning strategy witnessing that
A ⊧X ∃z(x ⊆ z ∧ y ≠ z ∧ y � z). Towards a contradiction, assume that some
a ∈ A occurs as value for both x and y in X.

Let T = Team(S , (x ⊆ z ∧ y ≠ z ∧ y � z)).

By consistency with x ⊆ z, T contains an assignment s with s(z) = a.

Since a occurs as a value for y, T has an assignment s′ with s′(y) = a.

By consistency with y � z there must be a further assignent s′′ with
s′′(y) = a and s′′(z) = a.

�is contradicts consistency with y ≠ z.

Erich Grädel Logics for dependence and independence

Exclusion is expressible with simple independence

Lemma. (Galliani) x ∣ y ≡ ∃z(x ⊆ z ∧ y ≠ z ∧ y � z)

Conversely suppose that S is a consistent winning strategy witnessing that
A ⊧X ∃z(x ⊆ z ∧ y ≠ z ∧ y � z). Towards a contradiction, assume that some
a ∈ A occurs as value for both x and y in X.

Let T = Team(S , (x ⊆ z ∧ y ≠ z ∧ y � z)).

By consistency with x ⊆ z, T contains an assignment s with s(z) = a.

Since a occurs as a value for y, T has an assignment s′ with s′(y) = a.

By consistency with y � z there must be a further assignent s′′ with
s′′(y) = a and s′′(z) = a.

�is contradicts consistency with y ≠ z.

Erich Grädel Logics for dependence and independence

Inclusion is expressible with simple independence

Lemma. (Galliani) x ⊆ y ≡ ∀z∀u(φ ∨ φ ∨ φ) where
- φ ∶= (z ≠ x ∧ z ≠ y) ∨ (u ≠  ∧ u ≠ )
- φ ∶= (u =  ∧ z ≠ y)
- φ ∶= ((u =  ∧ z = y) ∨ u = ) ∧ z � u)

Let X be a team on A (containing two distinct elements ,) and let
Y = X[z ↦ A][u ↦ A]. We have to show that A ⊧X x ⊆ y if, and only if,
Player  can find a decomposition Y = Y ∪ Y ∪ Y such that A ⊧Yi φi (for

i = , , ).

Suppose that A ⊧X (x ⊆ y). We can satisfy the first two formulae by
Y ∶= {s ∈ Y ∶ s(u) ∈ A∖ {, }} ∪ {s ∈ Y ∶ s(z) /∈ {s(x), s(y)}}
Y ∶= {s ∈ Y ∶ s(u) =  ∧ s(z) ≠ s(y)}

�is leaves us with

Y = {s ∈ Y ∶ s(z) = s(y) ∧ s(u) ∈ {, }} ∪ {s ∈ Y ∶ s(u) =  ∧ s(z) = s(x)}

Erich Grädel Logics for dependence and independence

Inclusion is expressible with simple independence

For Y = {s ∈ Y ∶ s(z) = s(y) ∧ s(u) ∈ {, }} ∪ {s ∈ Y ∶ s(u) = ∧ s(z) = s(x)}
we have to show that

A ⊧Y ((u =  ∧ z = y) ∨ u = ) ∧ z � u)

Clearly the first conjunct is true. It remains to show that Y ⊧ (z � u), i.e.,

(∀s, s′ ∈ Y)(∃s′′ ∈ Y)(s′′(z) = s(z) ∧ s′′(u) = s′(u))

- if s(z) = s(y) let s′′ ∶= s[u ↦ s′(u)].
s′′ ∈ Y since s′′(z) = s(z) = s(y) = s′′(y)

- if s(z) ≠ s(y), then s(u) =  and s(z) = s(x).
Since X ⊧ (x ⊆ y) there exists t ∈ X with t(y) = s(x).
Set s′′ ∶= t[z ↦ s(z)][u ↦ s′(u)].
Again s′′ ∈ Y since s′′(z) = s(z) = s(x) = t(y) = s′′(y).

Erich Grädel Logics for dependence and independence

Inclusion is expressible with simple independence

For Y = {s ∈ Y ∶ s(z) = s(y) ∧ s(u) ∈ {, }} ∪ {s ∈ Y ∶ s(u) = ∧ s(z) = s(x)}
we have to show that

A ⊧Y ((u =  ∧ z = y) ∨ u = ) ∧ z � u)

Clearly the first conjunct is true. It remains to show that Y ⊧ (z � u), i.e.,

(∀s, s′ ∈ Y)(∃s′′ ∈ Y)(s′′(z) = s(z) ∧ s′′(u) = s′(u))

- if s(z) = s(y) let s′′ ∶= s[u ↦ s′(u)].
s′′ ∈ Y since s′′(z) = s(z) = s(y) = s′′(y)

- if s(z) ≠ s(y), then s(u) =  and s(z) = s(x).
Since X ⊧ (x ⊆ y) there exists t ∈ X with t(y) = s(x).
Set s′′ ∶= t[z ↦ s(z)][u ↦ s′(u)].
Again s′′ ∈ Y since s′′(z) = s(z) = s(x) = t(y) = s′′(y).

Erich Grädel Logics for dependence and independence

Inclusion is expressible with simple independence

For Y = {s ∈ Y ∶ s(z) = s(y) ∧ s(u) ∈ {, }} ∪ {s ∈ Y ∶ s(u) = ∧ s(z) = s(x)}
we have to show that

A ⊧Y ((u =  ∧ z = y) ∨ u = ) ∧ z � u)

Clearly the first conjunct is true. It remains to show that Y ⊧ (z � u), i.e.,

(∀s, s′ ∈ Y)(∃s′′ ∈ Y)(s′′(z) = s(z) ∧ s′′(u) = s′(u))

- if s(z) = s(y) let s′′ ∶= s[u ↦ s′(u)].
s′′ ∈ Y since s′′(z) = s(z) = s(y) = s′′(y)

- if s(z) ≠ s(y), then s(u) =  and s(z) = s(x).
Since X ⊧ (x ⊆ y) there exists t ∈ X with t(y) = s(x).
Set s′′ ∶= t[z ↦ s(z)][u ↦ s′(u)].
Again s′′ ∈ Y since s′′(z) = s(z) = s(x) = t(y) = s′′(y).

Erich Grädel Logics for dependence and independence

Inclusion is expressible with simple independence

For Y = {s ∈ Y ∶ s(z) = s(y) ∧ s(u) ∈ {, }} ∪ {s ∈ Y ∶ s(u) = ∧ s(z) = s(x)}
we have to show that

A ⊧Y ((u =  ∧ z = y) ∨ u = ) ∧ z � u)

Clearly the first conjunct is true. It remains to show that Y ⊧ (z � u), i.e.,

(∀s, s′ ∈ Y)(∃s′′ ∈ Y)(s′′(z) = s(z) ∧ s′′(u) = s′(u))

- if s(z) = s(y) let s′′ ∶= s[u ↦ s′(u)].
s′′ ∈ Y since s′′(z) = s(z) = s(y) = s′′(y)

- if s(z) ≠ s(y), then s(u) =  and s(z) = s(x).
Since X ⊧ (x ⊆ y) there exists t ∈ X with t(y) = s(x).
Set s′′ ∶= t[z ↦ s(z)][u ↦ s′(u)].
Again s′′ ∈ Y since s′′(z) = s(z) = s(x) = t(y) = s′′(y).

Erich Grädel Logics for dependence and independence

Inclusion is expressible with simple independence

Lemma. (Galliani) x ⊆ y ≡ ∀z∀u(φ ∨ φ ∨ φ) where
- φ ∶= (z ≠ x ∧ z ≠ y) ∨ (u ≠  ∧ u ≠ )
- φ ∶= (u =  ∧ z ≠ y)
- φ ∶= ((u =  ∧ z = y) ∨ u = ) ∧ z � u)

For the converse, assume Player  can find a decomposition Y = Y ∪ Y ∪ Y of
Y = X[z ↦ A][u ↦ A] such that A ⊧Yi φi (for i = , , ).

For any t ∈ X, let s = t[z ↦ t(x)][u ↦ ] and s′ = t[z ↦ t(y)][u ↦ ]. Any
team containing s or s′ violates φ and φ, so s, s′ ∈ Y.

Since Y ⊧ z � u there exists some s′′ ∈ Y with s′′(z) = s(z) = t(x) and
s′′(u) = s′(u) = . Since s′′(u) =  it follows that s′′(y) = s′′(z) = t(x). But
this means that t(x) occurs in X as a value for y.

We have proved that X ⊧ (x ⊆ y).

Erich Grädel Logics for dependence and independence

Inclusion is expressible with simple independence

Lemma. (Galliani) x ⊆ y ≡ ∀z∀u(φ ∨ φ ∨ φ) where
- φ ∶= (z ≠ x ∧ z ≠ y) ∨ (u ≠  ∧ u ≠ )
- φ ∶= (u =  ∧ z ≠ y)
- φ ∶= ((u =  ∧ z = y) ∨ u = ) ∧ z � u)

For the converse, assume Player  can find a decomposition Y = Y ∪ Y ∪ Y of
Y = X[z ↦ A][u ↦ A] such that A ⊧Yi φi (for i = , , ).

For any t ∈ X, let s = t[z ↦ t(x)][u ↦ ] and s′ = t[z ↦ t(y)][u ↦ ]. Any
team containing s or s′ violates φ and φ, so s, s′ ∈ Y.

Since Y ⊧ z � u there exists some s′′ ∈ Y with s′′(z) = s(z) = t(x) and
s′′(u) = s′(u) = . Since s′′(u) =  it follows that s′′(y) = s′′(z) = t(x). But
this means that t(x) occurs in X as a value for y.

We have proved that X ⊧ (x ⊆ y).

Erich Grädel Logics for dependence and independence

Inclusion is expressible with simple independence

Lemma. (Galliani) x ⊆ y ≡ ∀z∀u(φ ∨ φ ∨ φ) where
- φ ∶= (z ≠ x ∧ z ≠ y) ∨ (u ≠  ∧ u ≠ )
- φ ∶= (u =  ∧ z ≠ y)
- φ ∶= ((u =  ∧ z = y) ∨ u = ) ∧ z � u)

For the converse, assume Player  can find a decomposition Y = Y ∪ Y ∪ Y of
Y = X[z ↦ A][u ↦ A] such that A ⊧Yi φi (for i = , , ).

For any t ∈ X, let s = t[z ↦ t(x)][u ↦ ] and s′ = t[z ↦ t(y)][u ↦ ]. Any
team containing s or s′ violates φ and φ, so s, s′ ∈ Y.

Since Y ⊧ z � u there exists some s′′ ∈ Y with s′′(z) = s(z) = t(x) and
s′′(u) = s′(u) = . Since s′′(u) =  it follows that s′′(y) = s′′(z) = t(x). But
this means that t(x) occurs in X as a value for y.

We have proved that X ⊧ (x ⊆ y).

Erich Grädel Logics for dependence and independence

Inclusion is expressible with simple independence

Lemma. (Galliani) x ⊆ y ≡ ∀z∀u(φ ∨ φ ∨ φ) where
- φ ∶= (z ≠ x ∧ z ≠ y) ∨ (u ≠  ∧ u ≠ )
- φ ∶= (u =  ∧ z ≠ y)
- φ ∶= ((u =  ∧ z = y) ∨ u = ) ∧ z � u)

For the converse, assume Player  can find a decomposition Y = Y ∪ Y ∪ Y of
Y = X[z ↦ A][u ↦ A] such that A ⊧Yi φi (for i = , , ).

For any t ∈ X, let s = t[z ↦ t(x)][u ↦ ] and s′ = t[z ↦ t(y)][u ↦ ]. Any
team containing s or s′ violates φ and φ, so s, s′ ∈ Y.

Since Y ⊧ z � u there exists some s′′ ∈ Y with s′′(z) = s(z) = t(x) and
s′′(u) = s′(u) = . Since s′′(u) =  it follows that s′′(y) = s′′(z) = t(x). But
this means that t(x) occurs in X as a value for y.

We have proved that X ⊧ (x ⊆ y).

Erich Grädel Logics for dependence and independence

Simple independence atoms suffice

Recall that Galliani proved that independence logic has the same expressive

power as FO with inclusion and exclusion atoms. Since these are expressible

via simple independence atoms, the generalized independence atoms are not

really necessary.

Corollary (Galliani)

Independence logic ≡ (FO + simple independence atoms)

Erich Grädel Logics for dependence and independence

Deterministic versus nondeterministic strategies

Our notion of constent winning strategies is nondeteministic:

A consistent winning strategy of Player  for G and Win is a pair
S = (W , F) ⊆ (V , E) with F ⊆ (W ×W) ∩ E such that

() W is the set of nodes that are reachable from I via edges in F

() if v ∈ V ∩W then vF ≠ ∅

() if v ∈ V ∩W then vF = vE

() W ∩ T ∈Win.

Erich Grädel Logics for dependence and independence

Deterministic versus nondeterministic strategies

�e deterministic variant:

A deterministic consistent winning strategy of Player  for G and Win is a pair
S = (W , F) ⊆ (V , E) with F ⊆ (W ×W) ∩ E such that

() W is the set of nodes that are reachable from I via edges in F

() if v ∈ V ∩W then ∣vF∣ = 

() if v ∈ V ∩W then vF = vE

() W ∩ T ∈Win.

In most classical games, deterministic strategies are no less powerful than

nondeterministic ones. Is this also the case for second-order reachability

games?

Erich Grädel Logics for dependence and independence

Why is the nondeterministic semantics the right one ?

Consider the formula ∃x(y ⊆ x ∧ z ⊆ x) which says
�e team under consideration can be extended by values for x such
that all values for y and z in the team occur als values for x

True for any team X: assign to x all values occurring for y and z in X.

But under deterministic (strict) semantics for (∃x) this not the case. Let
X = {s} with s(y) ≠ (z). By chosing just one witness for x, we cannot make
the formula true for this team.

So under deterministic semantics, this formula says something different.

So what?

Erich Grädel Logics for dependence and independence

Why is the nondeterministic semantics the right one ?

Consider the formula ∃x(y ⊆ x ∧ z ⊆ x) which says
�e team under consideration can be extended by values for x such
that all values for y and z in the team occur als values for x

True for any team X: assign to x all values occurring for y and z in X.

But under deterministic (strict) semantics for (∃x) this not the case. Let
X = {s} with s(y) ≠ (z). By chosing just one witness for x, we cannot make
the formula true for this team.

So under deterministic semantics, this formula says something different.

So what?

Erich Grädel Logics for dependence and independence

Why is the nondeterministic semantics the right one ?

Consider the formula ∃x(y ⊆ x ∧ z ⊆ x) which says
�e team under consideration can be extended by values for x such
that all values for y and z in the team occur als values for x

True for any team X: assign to x all values occurring for y and z in X.

But under deterministic (strict) semantics for (∃x) this not the case. Let
X = {s} with s(y) ≠ (z). By chosing just one witness for x, we cannot make
the formula true for this team.

So under deterministic semantics, this formula says something different.

So what?

Erich Grädel Logics for dependence and independence

Why is the nondeterministic semantics the right one ?

Consider the formula ∃x(y ⊆ x ∧ z ⊆ x) which says
�e team under consideration can be extended by values for x such
that all values for y and z in the team occur als values for x

True for any team X: assign to x all values occurring for y and z in X.

But under deterministic (strict) semantics for (∃x) this not the case. Let
X = {s} with s(y) ≠ (z). By chosing just one witness for x, we cannot make
the formula true for this team.

So under deterministic semantics, this formula says something different.

So what?

Erich Grädel Logics for dependence and independence

Why is the nondeterministic semantics the right one ?

Consider the formula ∃x(y ⊆ x ∧ z ⊆ x) and the team

X =
y z u
  

  

Clearly X ⊧ ∃x(y ⊆ x ∧ z ⊆ x) even under deterministic semantics.

But under deterministic semantics X ↾ {y, z} /⊧ ∃x(y ⊆ x ∧ z ⊆ x)

Hence deterministic semantics violates the locality principle !

Erich Grädel Logics for dependence and independence

Why is the nondeterministic semantics the right one ?

Consider the formula ∃x(y ⊆ x ∧ z ⊆ x) and the team

X =
y z u
  

  

Clearly X ⊧ ∃x(y ⊆ x ∧ z ⊆ x) even under deterministic semantics.

But under deterministic semantics X ↾ {y, z} /⊧ ∃x(y ⊆ x ∧ z ⊆ x)

Hence deterministic semantics violates the locality principle !

Erich Grädel Logics for dependence and independence

Why is the nondeterministic semantics the right one ?

Consider the formula ∃x(y ⊆ x ∧ z ⊆ x) and the team

X =
y z u
  

  

Clearly X ⊧ ∃x(y ⊆ x ∧ z ⊆ x) even under deterministic semantics.

But under deterministic semantics X ↾ {y, z} /⊧ ∃x(y ⊆ x ∧ z ⊆ x)

Hence deterministic semantics violates the locality principle !

Erich Grädel Logics for dependence and independence

Downwards Closure

In model-checking games for dependence logic, deterministic strategies

suffice. �e reason is that dependence logic is downwards closed for teams.

A winning condition Win ⊆ P(T) is downwards closed if U ∈Win and Z ⊆ U
imply Z ∈Win.

Proposition. Let Win be downwards closed. �en Player  has a consistent

winning strategy for G and Win if, and only if, she has a deterministic one.

Is this sufficient condition also necessary?

No, but we can find a weaker condition, that is both necessary and sufficient

for guaranteeing the possibility to eliminate nondeterministic strategies.

Erich Grädel Logics for dependence and independence

Downwards Closure

In model-checking games for dependence logic, deterministic strategies

suffice. �e reason is that dependence logic is downwards closed for teams.

A winning condition Win ⊆ P(T) is downwards closed if U ∈Win and Z ⊆ U
imply Z ∈Win.

Proposition. Let Win be downwards closed. �en Player  has a consistent

winning strategy for G and Win if, and only if, she has a deterministic one.

Is this sufficient condition also necessary?

No, but we can find a weaker condition, that is both necessary and sufficient

for guaranteeing the possibility to eliminate nondeterministic strategies.

Erich Grädel Logics for dependence and independence

Downwards Closure

In model-checking games for dependence logic, deterministic strategies

suffice. �e reason is that dependence logic is downwards closed for teams.

A winning condition Win ⊆ P(T) is downwards closed if U ∈Win and Z ⊆ U
imply Z ∈Win.

Proposition. Let Win be downwards closed. �en Player  has a consistent

winning strategy for G and Win if, and only if, she has a deterministic one.

Is this sufficient condition also necessary?

No, but we can find a weaker condition, that is both necessary and sufficient

for guaranteeing the possibility to eliminate nondeterministic strategies.

Erich Grädel Logics for dependence and independence

Splits

A collection F ⊆ P(T) has a split if there exist U,U /∈ F such that
U ∪U ∈ F .

If F is downwards closed, then it has no splits. �e converse is not true.

�eorem. If Win ⊆ P(T) has no splits, then for any second-order reachability
game (G ,Win), Player  has a consistent winning strategy, if and only if, she
has a deterministic one. Conversely, if Win ⊆ P(T) has a split, then there
exists a game graph G with T as its set of terminal nodes such that Player  has
a consistent winning strategy for (G ,Win) but not a deterministic one.

Erich Grädel Logics for dependence and independence

Splits

A collection F ⊆ P(T) has a split if there exist U,U /∈ F such that
U ∪U ∈ F .

If F is downwards closed, then it has no splits. �e converse is not true.

�eorem. If Win ⊆ P(T) has no splits, then for any second-order reachability
game (G ,Win), Player  has a consistent winning strategy, if and only if, she
has a deterministic one. Conversely, if Win ⊆ P(T) has a split, then there
exists a game graph G with T as its set of terminal nodes such that Player  has
a consistent winning strategy for (G ,Win) but not a deterministic one.

Erich Grädel Logics for dependence and independence

Splits

A collection F ⊆ P(T) has a split if there exist U,U /∈ F such that
U ∪U ∈ F .

If F is downwards closed, then it has no splits. �e converse is not true.

�eorem. If Win ⊆ P(T) has no splits, then for any second-order reachability
game (G ,Win), Player  has a consistent winning strategy, if and only if, she
has a deterministic one. Conversely, if Win ⊆ P(T) has a split, then there
exists a game graph G with T as its set of terminal nodes such that Player  has
a consistent winning strategy for (G ,Win) but not a deterministic one.

Erich Grädel Logics for dependence and independence

Negation

Define the semantic extension of ψ on A as [[ψ]]A ∶= {X ∶ A ⊧X ψ}.

Negation is not a semantic operation, contrary to disjunction, conjunction,

and quantifiers.

When we know [[ψ]]A and [[φ]]A we can easily compute [[φ ∧ ψ]]A and
[[φ ∨ ψ]]A (without even knowing the syntax of ψ and φ). Analogous
observations for quantifiers.

However, knowing [[ψ]]A does not provide much knowledge about [[ψ¬]]A.

Erich Grädel Logics for dependence and independence

Negation

Define the semantic extension of ψ on A as [[ψ]]A ∶= {X ∶ A ⊧X ψ}.

Negation is not a semantic operation, contrary to disjunction, conjunction,

and quantifiers.

When we know [[ψ]]A and [[φ]]A we can easily compute [[φ ∧ ψ]]A and
[[φ ∨ ψ]]A (without even knowing the syntax of ψ and φ). Analogous
observations for quantifiers.

However, knowing [[ψ]]A does not provide much knowledge about [[ψ¬]]A.

Erich Grädel Logics for dependence and independence

Negation

Define the semantic extension of ψ on A as [[ψ]]A ∶= {X ∶ A ⊧X ψ}.

Negation is not a semantic operation, contrary to disjunction, conjunction,

and quantifiers.

When we know [[ψ]]A and [[φ]]A we can easily compute [[φ ∧ ψ]]A and
[[φ ∨ ψ]]A (without even knowing the syntax of ψ and φ). Analogous
observations for quantifiers.

However, knowing [[ψ]]A does not provide much knowledge about [[ψ¬]]A.

Erich Grädel Logics for dependence and independence

Negation and interpolation

We only consider structures with at least wo elements. Two formulae ψ and φ
are contradictory if [[ψ]]A ∩ [[φ]]A = {∅} for any structure A.

Proposition. (Kontinen and Väänn̈anen) For any two contradictory

formulae ψ and φ of dependence logic there is a formula ϑ such that
[[ϑ]]A = [[ψ]]A and [[ϑ¬]]A = [[φ]]A for all A.

In this form, this is not true in general for logics with team semantics. For

instance independence logic contains ∀x(x ⊆ y) and =(y) which are
contradictory but we will see that they have no such interpolant.

Erich Grädel Logics for dependence and independence

Negation and interpolation

We only consider structures with at least wo elements. Two formulae ψ and φ
are contradictory if [[ψ]]A ∩ [[φ]]A = {∅} for any structure A.

Proposition. (Kontinen and Väänn̈anen) For any two contradictory

formulae ψ and φ of dependence logic there is a formula ϑ such that
[[ϑ]]A = [[ψ]]A and [[ϑ¬]]A = [[φ]]A for all A.

In this form, this is not true in general for logics with team semantics. For

instance independence logic contains ∀x(x ⊆ y) and =(y) which are
contradictory but we will see that they have no such interpolant.

Erich Grädel Logics for dependence and independence

Strongly contradictory formulae

Two formulae ψ and φ are strongly contradictory if X ∩ Y = ∅ for all teams
X ,Y and all structures A such that A ⊧X ψ and A ⊧Y φ.

Lemma. Every formula is strongly contradictory to its negation.

By induction. For atomic formulae, this is true by definition. Consider

ψ = φ ∨ ϑ and ψ¬ = φ¬ ∧ ϑ¬. If A ⊧X ψ then X = X′ ∪ X′′ with A ⊧X′ φ and
A ⊧X′′ ϑ. If A ⊧Y ψ¬ then A ⊧Y φ¬ and A ⊧Y ϑ¬. Hence X′ ∩ Y = X′′ ∩ Y = ∅
and thus also X ∩ Y = ∅.

Finally let ψ = ∃y φ and ψ¬ = ∀y φ¬. If A ⊧X ψ then A ⊧X[y↦F] φ for some
F ∶ X → P(A) ∖ {∅}. If A ⊧Y ψ¬ then A ⊧Y[y↦A] φ. Hence
X[y ↦ F] ∩ Y[y ↦ A] = ∅ and thus X ∩ Y = ∅.

Remark. Contradictory formulae of dependence logic are in fact strongly

contradictory. Indeed, suppose that A ⊧X ψ and A ⊧Y φ. �en, by downwards
closure, A ⊧X∩Y ψ ∧ φ, so X ∩ Y = ∅.

Erich Grädel Logics for dependence and independence

Strongly contradictory formulae

Two formulae ψ and φ are strongly contradictory if X ∩ Y = ∅ for all teams
X ,Y and all structures A such that A ⊧X ψ and A ⊧Y φ.

Lemma. Every formula is strongly contradictory to its negation.

By induction. For atomic formulae, this is true by definition. Consider

ψ = φ ∨ ϑ and ψ¬ = φ¬ ∧ ϑ¬. If A ⊧X ψ then X = X′ ∪ X′′ with A ⊧X′ φ and
A ⊧X′′ ϑ. If A ⊧Y ψ¬ then A ⊧Y φ¬ and A ⊧Y ϑ¬. Hence X′ ∩ Y = X′′ ∩ Y = ∅
and thus also X ∩ Y = ∅.

Finally let ψ = ∃y φ and ψ¬ = ∀y φ¬. If A ⊧X ψ then A ⊧X[y↦F] φ for some
F ∶ X → P(A) ∖ {∅}. If A ⊧Y ψ¬ then A ⊧Y[y↦A] φ. Hence
X[y ↦ F] ∩ Y[y ↦ A] = ∅ and thus X ∩ Y = ∅.

Remark. Contradictory formulae of dependence logic are in fact strongly

contradictory. Indeed, suppose that A ⊧X ψ and A ⊧Y φ. �en, by downwards
closure, A ⊧X∩Y ψ ∧ φ, so X ∩ Y = ∅.

Erich Grädel Logics for dependence and independence

Contradictory formulae without interpolants

Corollary. Only a pair of strongly contradictory formulae ψ, φ can have an
interpolant ϑ with ψ ≡ ϑ and φ ≡ ϑ¬.

�e formulae ∀x(x ⊆ y) and =(y) are contradictory (on structures with at
least two elements) but have no interpolant, since they are not strongly

contradictory.

Indeed, let sa be the assignment y ↦ a. �en [[∀x(x ⊆ y]]A = {X} with
X = {sa ∶ a ∈ A}, whereas [[=(y)]]A = {{sa} ∶ a ∈ A}, and we have
X ∩ {sa} = {sa} ≠ ∅.

Being strongly contradictory is a necessary condition for having an

interpolant. We will see that it is also sufficient.

Erich Grädel Logics for dependence and independence

Contradictory formulae without interpolants

Corollary. Only a pair of strongly contradictory formulae ψ, φ can have an
interpolant ϑ with ψ ≡ ϑ and φ ≡ ϑ¬.

�e formulae ∀x(x ⊆ y) and =(y) are contradictory (on structures with at
least two elements) but have no interpolant, since they are not strongly

contradictory.

Indeed, let sa be the assignment y ↦ a. �en [[∀x(x ⊆ y]]A = {X} with
X = {sa ∶ a ∈ A}, whereas [[=(y)]]A = {{sa} ∶ a ∈ A}, and we have
X ∩ {sa} = {sa} ≠ ∅.

Being strongly contradictory is a necessary condition for having an

interpolant. We will see that it is also sufficient.

Erich Grädel Logics for dependence and independence

Completely undetermined sentences

A sentence is completely undetermined if neither the sentence itself, nor its

negation is true on any structure with more than one element.

Examples: ∀x =(x) or ∀x∃y(x�y ∧ x = y)

Proposition. Let L be any logic with team semantics, closed under first-order
operations, containing a completely undetermined sentence ��. �en for any
ψ, φ ∈ L, the following are equivalent
() �ere is a formula η such that ψ ⊧ η and φ ⊧ η¬

() �ere is a formula ϑ such that ψ ≡ ϑ and φ ≡ ϑ¬

Proof. ()⇒ (): Take η = ϑ.

()⇒ (): Take ϑ ∶= (ψ ∨ ��) ∧ ((φ ∨ ��)¬ ∨ η). �en
ϑ ≡ ψ ∧ (� ∨ η) ≡ ψ ∧ η ≡ ψ
ϑ¬ = (ψ ∨ ��)¬ ∨ ((φ ∨ ��) ∧ η¬) ≡ � ∨ (φ ∧ η¬) ≡ φ ∧ η¬ ≡ φ.

Erich Grädel Logics for dependence and independence

-closed formulae

A formula ψ -closed if whenever A ⊧X ψ then also A ⊧{s} ψ for all s ∈ X.

All formulae of dependence logic are -closed. Further independence atoms

(and in fact all purely existential formulae of indepence logic) are -closed.

Lemma. Let L be a logic with team semantics, that is closed under first.order
operations and translatable into Σ. �en for every formula ψ ∈ L there exists a
formula ψ↓ in dependence logic such that the teams satisfying ψ↓ are exactly
the subteams of the teams satisfying ψ.

Proof. Translate ψ into ψ∗(Y) ∈ Σ and let
φ(X) = ∃Y(∀x(Xx → Yx) ∧ ψ∗(Y)). Since X appears only negatively in
φ(X), it can be translated into an equivalent formula ψ↓.

Notice that ψ ⊧ ψ↓ and that ψ↓ is -closed. Further ψ and φ are strongly
contradictory if, and only if, ψ↓ and φ↓ are contradictory (and hence strongly
contradictory).

Erich Grädel Logics for dependence and independence

�e Interpolation�eorem

Let L be a logic with team semantics, which contains FO and can be embedded
into Σ, and which has a totally undetermined sentence.

�eorem. For any two strongly contradictory formulae ψ, φ from L, there
exists a formula ϑ in L such that ψ ≡ ϑ and φ ≡ ϑ¬.

Let ∃Rψ̃(R, X) and ∃Sφ̃(S , X) be Σ-translations of ψ↓ and φ↓. �en
ψ̃(R, X) ⊧ (¬φ̃(S , X) ∨ X = ∅) is a valid first-order implication.

By Craig’s Interpolation�eorem there is a first-order sentence η̃(X) such that
ψ̃(R, X) ⊧ η̃(X) and (φ̃(S , X) ∧ X ≠ ∅) ⊧ ¬η̃(X).

Let η(x) ∶= η̃[Xz/z = x]. For any team {s} of size one, we have (A, {s}) ⊧ η̃ if,
and only if, A ⊧{s} η.

Claim. ψ ⊧ η and φ ⊧ ¬η (and hence an interpolant ϑ exists)

Erich Grädel Logics for dependence and independence

�e Interpolation�eorem

Claim. ψ ⊧ η and φ ⊧ ¬η.

Let A ⊧X ψ. �en also A ⊧X ψ↓ and, since ψ↓ is -closed, also A ⊧{s} ψ↓ for all
s ∈ X. �is implies that A ⊧ ∃Rψ̃(R, {s}) and therefore A ⊧ η̃({s}) and thus
A ⊧{s} η for all s ∈ X. But since η ∈ FO this implies that A ⊧X η.

Suppose A ⊧X φ. Again we get A ⊧{s} φ↓ for all s ∈ X. �erefore
A ⊧ ∃Sφ̃(S , {s}) and hence A ⊧ ¬η̃({s}). �is implies A ⊧{s} ¬η for all s ∈ X,
and since η ∈ FO, we have A ⊧X ¬η.

Erich Grädel Logics for dependence and independence

�e Interpolation�eorem

Claim. ψ ⊧ η and φ ⊧ ¬η.

Let A ⊧X ψ. �en also A ⊧X ψ↓ and, since ψ↓ is -closed, also A ⊧{s} ψ↓ for all
s ∈ X. �is implies that A ⊧ ∃Rψ̃(R, {s}) and therefore A ⊧ η̃({s}) and thus
A ⊧{s} η for all s ∈ X. But since η ∈ FO this implies that A ⊧X η.

Suppose A ⊧X φ. Again we get A ⊧{s} φ↓ for all s ∈ X. �erefore
A ⊧ ∃Sφ̃(S , {s}) and hence A ⊧ ¬η̃({s}). �is implies A ⊧{s} ¬η for all s ∈ X,
and since η ∈ FO, we have A ⊧X ¬η.

Erich Grädel Logics for dependence and independence

Part III: Least Fixed-Point Logic, Inclusion Logic, and the

Quest for a Logic for P

�e quest for a logic for polynomial time

State of the art and challenges for current research

Structure of least fixed point logic

Inclusion logic versus least fixed-point logic

Erich Grädel Logics for dependence and independence

�emost important problem of Finite Model �eory

Is there a logic that captures P?

Informal definition: A logic L captures P if it defines precisely those
properties of finite structures that are decidable in polynomial time:

() For every sentence ψ ∈ L, the set of finite models of ψ is decidable in
polynomial time.

() For every P-property S of finite τ-structures, there is a sentence
ψ ∈ L such that S = {A ∈ Fin(τ) ∶ A ⊧ ψ}.

�e precise definition is more subtle. It includes certain effectiveness

requirements to exclude pathological ‘solutions’.

Erich Grädel Logics for dependence and independence

�emost important problem of Finite Model �eory

Is there a logic that captures P?

Informal definition: A logic L captures P if it defines precisely those
properties of finite structures that are decidable in polynomial time:

() For every sentence ψ ∈ L, the set of finite models of ψ is decidable in
polynomial time.

() For every P-property S of finite τ-structures, there is a sentence
ψ ∈ L such that S = {A ∈ Fin(τ) ∶ A ⊧ ψ}.

�e precise definition is more subtle. It includes certain effectiveness

requirements to exclude pathological ‘solutions’.

Erich Grädel Logics for dependence and independence

�emost important problem of Finite Model �eory

Is there a logic that captures P?

Informal definition: A logic L captures P if it defines precisely those
properties of finite structures that are decidable in polynomial time:

() For every sentence ψ ∈ L, the set of finite models of ψ is decidable in
polynomial time.

() For every P-property S of finite τ-structures, there is a sentence
ψ ∈ L such that S = {A ∈ Fin(τ) ∶ A ⊧ ψ}.

�e precise definition is more subtle. It includes certain effectiveness

requirements to exclude pathological ‘solutions’.

Erich Grädel Logics for dependence and independence

First-Order Logic

First-order logic (FO) is far too weak to capture P.

FO can express only local properties of finite structures

�eorems of Gaifman and Hanf

Global properties (e.g. planarity of graphs) are not expressible.

FO has no mechanism for recursion or unbounded iteration.

Transitive closures, reachability or termination properties, winning

regions in games, etc. are not FO-definable.

FO can only express properties in AC

AC is constant parallel time with polynomial hardware. In particular,

FO ⊆ L.

Erich Grädel Logics for dependence and independence

Second-Order Logic

Second-order logic (SO) is (probably) too strong to capture P.

Fagin’s �eorem. Existential SO captures NP.

Corollary. SO captures the polynomial hierarchy.

�us SO captures polynomial time if, and only if, P = NP.

Monadic second-order logic is orthogonal to P:

On words, MSO captures the regular languages, and not all P-languages

are regular.

On graphs, MSO can express NP-complete properties, such as -colourability.

Erich Grädel Logics for dependence and independence

Second-Order Logic

Second-order logic (SO) is (probably) too strong to capture P.

Fagin’s �eorem. Existential SO captures NP.

Corollary. SO captures the polynomial hierarchy.

�us SO captures polynomial time if, and only if, P = NP.

Monadic second-order logic is orthogonal to P:

On words, MSO captures the regular languages, and not all P-languages

are regular.

On graphs, MSO can express NP-complete properties, such as -colourability.

Erich Grädel Logics for dependence and independence

Least fixed point logic LFP

Syntax. LFP extends FO by fixed point rule:

For every formula ψ(T , x . . . xk) ∈ LFP[τ ∪ {T}],
T k-ary relation variable, occuring only positive in ψ,
build formulae [lfpTx .ψ](x) and [gfpTx .ψ](x)

Semantics. On τ-structure A, ψ(T , x) defines monotone operator

ψA ∶ P(Ak) Ð→ P(Ak)
T z→ {a ∶ (A, T) ⊧ ψ(T , a)}

A ⊧ [lfpTx .ψ(T , x)](a) ∶⇐⇒ a ∈ lfp(ψA)
A ⊧ [gfpTx .ψ(T , x)](a) ∶⇐⇒ a ∈ gfp(ψA)

Erich Grädel Logics for dependence and independence

LFP and polynomial time

�eorem (Immerman, Vardi)

On ordered finite structures, LFP captures P.

On arbitrary finite structures, LFP can express certain P-complete

problems (such as winning regions of reachability games), but fails to express

all of P.

LFP is unable to count.

For instance the class of graphs with an even number of vertices is not

LFP-definable.

Immerman suggested to extend fixed-point logics by a counting mechanism.

Erich Grädel Logics for dependence and independence

LFP and polynomial time

�eorem (Immerman, Vardi)

On ordered finite structures, LFP captures P.

On arbitrary finite structures, LFP can express certain P-complete

problems (such as winning regions of reachability games), but fails to express

all of P.

LFP is unable to count.

For instance the class of graphs with an even number of vertices is not

LFP-definable.

Immerman suggested to extend fixed-point logics by a counting mechanism.

Erich Grädel Logics for dependence and independence

LFP and polynomial time

�eorem (Immerman, Vardi)

On ordered finite structures, LFP captures P.

On arbitrary finite structures, LFP can express certain P-complete

problems (such as winning regions of reachability games), but fails to express

all of P.

LFP is unable to count.

For instance the class of graphs with an even number of vertices is not

LFP-definable.

Immerman suggested to extend fixed-point logics by a counting mechanism.

Erich Grädel Logics for dependence and independence

Fixed-point logic with counting

(FP + C): A two-sorted fixed-point logic with counting terms.

Two sorts of variables:

- x , y, z,. . . ranging over the domain of the given finite structure
- µ, ν, . . . ranging over natural numbers

On natural numbers, standard arithmetic operations +, ⋅ and < are available,
but variables must be explicitely bounded and only take polynomially

bounded values.

Counting terms: For a formula φ(x), the term #xφ(x) denotes the number of
elements a of the structure that satisfy φ(a).

Least or inflationary fixed point operator defining formulae of the form

[fpRxµ≤t .ψ(R, x , µ)](y, ν).

Erich Grädel Logics for dependence and independence

Infinitary logic with counting

(FP + C) can be embedded into the infinitary logic Cω
∞ω, which extends

first-order logic by allowing

- counting quantifiers ∃ix: there exist at least i elements x such that. . .
- infinitary conjunctions and disjunctions:

⋁Φ and ⋀Φ for any set Φ of formulae
- but only finitely many distinct variables in each formula.

Ck
∞ω is the k-variable-fragment of Cω

∞ω

Why are we interested in this infinitary logic?

Ck
∞ω-equivalence of finite structures, and hence non-expressibility results for

(FP+C) can be proved via appropriate variants of Ehrenfeucht-Fraïssé games,

as for instance Hella’s k-pebble bijection games.

Erich Grädel Logics for dependence and independence

Infinitary logic with counting

(FP + C) can be embedded into the infinitary logic Cω
∞ω, which extends

first-order logic by allowing

- counting quantifiers ∃ix: there exist at least i elements x such that. . .
- infinitary conjunctions and disjunctions:

⋁Φ and ⋀Φ for any set Φ of formulae
- but only finitely many distinct variables in each formula.

Ck
∞ω is the k-variable-fragment of Cω

∞ω

Why are we interested in this infinitary logic?

Ck
∞ω-equivalence of finite structures, and hence non-expressibility results for

(FP+C) can be proved via appropriate variants of Ehrenfeucht-Fraïssé games,

as for instance Hella’s k-pebble bijection games.

Erich Grädel Logics for dependence and independence

Infinitary logic with counting

(FP + C) can be embedded into the infinitary logic Cω
∞ω, which extends

first-order logic by allowing

- counting quantifiers ∃ix: there exist at least i elements x such that. . .
- infinitary conjunctions and disjunctions:

⋁Φ and ⋀Φ for any set Φ of formulae
- but only finitely many distinct variables in each formula.

Ck
∞ω is the k-variable-fragment of Cω

∞ω

Why are we interested in this infinitary logic?

Ck
∞ω-equivalence of finite structures, and hence non-expressibility results for

(FP+C) can be proved via appropriate variants of Ehrenfeucht-Fraïssé games,

as for instance Hella’s k-pebble bijection games.

Erich Grädel Logics for dependence and independence

Infinitary logic with counting

(FP + C) can be embedded into the infinitary logic Cω
∞ω, which extends

first-order logic by allowing

- counting quantifiers ∃ix: there exist at least i elements x such that. . .
- infinitary conjunctions and disjunctions:

⋁Φ and ⋀Φ for any set Φ of formulae
- but only finitely many distinct variables in each formula.

Ck
∞ω is the k-variable-fragment of Cω

∞ω

Why are we interested in this infinitary logic?

Ck
∞ω-equivalence of finite structures, and hence non-expressibility results for

(FP+C) can be proved via appropriate variants of Ehrenfeucht-Fraïssé games,

as for instance Hella’s k-pebble bijection games.

Erich Grädel Logics for dependence and independence

Fixed-point logic with counting versus polynomial time

�eorem. (FP+C) ⊊ P (Cai, Fürer, Immerman )

It is easy to see that every (FP+C)-definable property of finite structures is

decidable in polynomial time.

On the other side, Cai, Fürer, and Immerman constructed sequences

(Gn)n∈ω and (Hn)n∈ω of graphs such that

() �ere is a class of graphs, that is decidable in polynomial time, which

includes all Gn and excludes all Hn

() Gn ≡C
n
∞ω Hn, for all n.

Although the Cai-Fürer-Immerman construction is sophisticated, the

property separating the Gn from the Hn seemed somewhat artificial.

Might it be the case that (FP+C) captures all “natural” P-properties

of finite structures?

Erich Grädel Logics for dependence and independence

Fixed-point logic with counting versus polynomial time

�eorem. (FP+C) ⊊ P (Cai, Fürer, Immerman )

It is easy to see that every (FP+C)-definable property of finite structures is

decidable in polynomial time.

On the other side, Cai, Fürer, and Immerman constructed sequences

(Gn)n∈ω and (Hn)n∈ω of graphs such that

() �ere is a class of graphs, that is decidable in polynomial time, which

includes all Gn and excludes all Hn

() Gn ≡C
n
∞ω Hn, for all n.

Although the Cai-Fürer-Immerman construction is sophisticated, the

property separating the Gn from the Hn seemed somewhat artificial.

Might it be the case that (FP+C) captures all “natural” P-properties

of finite structures?

Erich Grädel Logics for dependence and independence

Fixed-point logic with counting versus polynomial time

�eorem. (FP+C) ⊊ P (Cai, Fürer, Immerman )

It is easy to see that every (FP+C)-definable property of finite structures is

decidable in polynomial time.

On the other side, Cai, Fürer, and Immerman constructed sequences

(Gn)n∈ω and (Hn)n∈ω of graphs such that

() �ere is a class of graphs, that is decidable in polynomial time, which

includes all Gn and excludes all Hn

() Gn ≡C
n
∞ω Hn, for all n.

Although the Cai-Fürer-Immerman construction is sophisticated, the

property separating the Gn from the Hn seemed somewhat artificial.

Might it be the case that (FP+C) captures all “natural” P-properties

of finite structures?

Erich Grädel Logics for dependence and independence

Capturing polynomial time sometimes

Fixed-point logic with counting captures P on certain interesting classes

of structures, such as

trees (Immerman, Lander)

planar graphs and graphs of bounded genus (Grohe)

structures of bounded tree-width (Grohe, Marino)

chordal line graphs (Grohe)

interval graphs (Laubner)

all classes of graphs that exclude a minor (Grohe)

Further (FP+C) captures P almost everywhere, i.e. on a class of random

structures with asymptotic probability one. (Hella, Kolaitis, Luosto)

Erich Grädel Logics for dependence and independence

Formulae that define matrices

A formula φ(x , y) defines, when evaluated on a finite structure A, a square
matrixMA

φ = (ma,b)a,b∈A, with entries

ma,b ∶=
⎧⎪⎪⎨⎪⎪⎩

 if A ⊧ φ(a, b)
 if A /⊧ φ(a, b)

Also more general matrices, for instance with entries in an arbitrary finite

commutative ring, can be defined by appropriate (collections of) formulae.

Since we assume our structures to be unordered, these matrices are defined

only up to permutations of the rows and columns.

Erich Grädel Logics for dependence and independence

�e next frontier: linear algebra

Most concepts in linear algebra can be formulated in terms of matrices.

We are interested in matrix properties and functions on matrices that are

() invariant under permutations of the rows and columns

() computable in polynomial time

�is includes arithmetic operations on matrices, singularity, rank and

determinant, characteristic polynomials, minimal polynomials, solvablity of

linear equation systems, normal forms, . . .

Question: Which of these properties and operations are definable in (FP+C)?

�e answer may depend on the underlying ring.

One may considerQ,Z, finite fields, or arbitrary finite commutative rings.

Erich Grädel Logics for dependence and independence

Linear algebra in (FP+C)

Actually a fair amount of linear algebra can be defined in (FP + C):

- matrix addition and matrix multiplication

- matrix exponentiationMk (with k given in binary notation)
- (non-)singularity of matrices

- determinant (over finite fields,Q, and Z)
- characteristic polynomials

- minimal polynomials (on fields)

- matrix rank overQ

(Blass, Gurevich, Shelah), (Dawar, Grohe, Holm, Laubner), (Grädel, Pakusa)

Erich Grädel Logics for dependence and independence

Linear algebra outside (FP+C)

However, there are some fundamental polynomial-time properties in linear

algebra that are not definable in (FP+C)

- solvability of linear equation systems, over any finite commutative ring

- the rank of a matrix (over a finite field)

- similarity of matrices (over a finite field)

- rank equality (over a finite field)

�ese are also sources of new operators to extend the logics.

Current research: Fixed-point logics with rank operators, or with solvability

operators for linear equation systems. Expressive power, separation from

P. Choiceless computation.

Erich Grädel Logics for dependence and independence

Linear algebra outside (FP+C)

However, there are some fundamental polynomial-time properties in linear

algebra that are not definable in (FP+C)

- solvability of linear equation systems, over any finite commutative ring

- the rank of a matrix (over a finite field)

- similarity of matrices (over a finite field)

- rank equality (over a finite field)

�ese are also sources of new operators to extend the logics.

Current research: Fixed-point logics with rank operators, or with solvability

operators for linear equation systems. Expressive power, separation from

P. Choiceless computation.

Erich Grädel Logics for dependence and independence

Least and greatest fixed points

[lfpTx . φ(T , x)](a) ∶ a contained in smallest T with T = {x ∶ φ(T , x)}
[gfpTx . φ(S , x)](a) ∶ a contained in greatest T with T = {x ∶ φ(T , x)}

these T exist if Fφ ∶ T ↦ {x ∶ φ(T , x)} is monotone (preserves ⊆)
to guarantee monotonicity: require that T positive in φ

Inductive construction of the least and greatest fixed points on a structure A:

T ∶= ∅ S ∶= Ak

Tα+ ∶= Fφ(Tα) Sα+ ∶= Fφ(Sα)

Tλ ∶= ⋃
α<λ

Tα Sλ ∶= ⋂
α<λ

Sα
(λ limit ordinal)

Ô⇒ increasing/decreasing sequence of stages (Tα ⊆ Tα+, Sα ⊇ Sα+),

converges to fixed points T∞ and S∞ of Fφ

�eorem: T∞ = lfp(Fφ) and S∞ = gfp(Fφ) (Knaster, Tarski)

Erich Grädel Logics for dependence and independence

Least and greatest fixed points

[lfpTx . φ(T , x)](a) ∶ a contained in smallest T with T = {x ∶ φ(T , x)}
[gfpTx . φ(S , x)](a) ∶ a contained in greatest T with T = {x ∶ φ(T , x)}

these T exist if Fφ ∶ T ↦ {x ∶ φ(T , x)} is monotone (preserves ⊆)
to guarantee monotonicity: require that T positive in φ

Inductive construction of the least and greatest fixed points on a structure A:

T ∶= ∅ S ∶= Ak

Tα+ ∶= Fφ(Tα) Sα+ ∶= Fφ(Sα)

Tλ ∶= ⋃
α<λ

Tα Sλ ∶= ⋂
α<λ

Sα
(λ limit ordinal)

Ô⇒ increasing/decreasing sequence of stages (Tα ⊆ Tα+, Sα ⊇ Sα+),

converges to fixed points T∞ and S∞ of Fφ

�eorem: T∞ = lfp(Fφ) and S∞ = gfp(Fφ) (Knaster, Tarski)

Erich Grädel Logics for dependence and independence

Least and greatest fixed points

[lfpTx . φ(T , x)](a) ∶ a contained in smallest T with T = {x ∶ φ(T , x)}
[gfpTx . φ(S , x)](a) ∶ a contained in greatest T with T = {x ∶ φ(T , x)}

these T exist if Fφ ∶ T ↦ {x ∶ φ(T , x)} is monotone (preserves ⊆)
to guarantee monotonicity: require that T positive in φ

Inductive construction of the least and greatest fixed points on a structure A:

T ∶= ∅ S ∶= Ak

Tα+ ∶= Fφ(Tα) Sα+ ∶= Fφ(Sα)

Tλ ∶= ⋃
α<λ

Tα Sλ ∶= ⋂
α<λ

Sα
(λ limit ordinal)

Ô⇒ increasing/decreasing sequence of stages (Tα ⊆ Tα+, Sα ⊇ Sα+),

converges to fixed points T∞ and S∞ of Fφ

�eorem: T∞ = lfp(Fφ) and S∞ = gfp(Fφ) (Knaster, Tarski)

Erich Grädel Logics for dependence and independence

Least and greatest fixed points

[lfpTx . φ(T , x)](a) ∶ a contained in smallest T with T = {x ∶ φ(T , x)}
[gfpTx . φ(S , x)](a) ∶ a contained in greatest T with T = {x ∶ φ(T , x)}

these T exist if Fφ ∶ T ↦ {x ∶ φ(T , x)} is monotone (preserves ⊆)
to guarantee monotonicity: require that T positive in φ

Inductive construction of the least and greatest fixed points on a structure A:

T ∶= ∅ S ∶= Ak

Tα+ ∶= Fφ(Tα) Sα+ ∶= Fφ(Sα)

Tλ ∶= ⋃
α<λ

Tα Sλ ∶= ⋂
α<λ

Sα
(λ limit ordinal)

Ô⇒ increasing/decreasing sequence of stages (Tα ⊆ Tα+, Sα ⊇ Sα+),

converges to fixed points T∞ and S∞ of Fφ

�eorem: T∞ = lfp(Fφ) and S∞ = gfp(Fφ) (Knaster, Tarski)

Erich Grädel Logics for dependence and independence

LFP-definability for reachability and safety games

G is definable in LFP

Reachability: Player  has winning strategy for game G from position v
⇐⇒

G = (V ,V,V, E) ⊧ [lfpWx . (Vx ∧ ∃y(Exy ∧Wy))
∨ (Vx ∧ ∀y(Exy →Wy)](v)

Safety: Player  can avoid losing G from position v
⇐⇒

G = (V ,V,V, E) ⊧ [gfpWx . (Vx ∧ ∃y(Exy ∧Wy))
∨ (Vx ∧ ∀y(Exy →Wy)](v)

G is complete for LFP (via quantifier-free reductions on finite structures)

Erich Grädel Logics for dependence and independence

LFP-definability for reachability and safety games

G is definable in LFP

Reachability: Player  has winning strategy for game G from position v
⇐⇒

G = (V ,V,V, E) ⊧ [lfpWx . (Vx ∧ ∃y(Exy ∧Wy))
∨ (Vx ∧ ∀y(Exy →Wy)](v)

Safety: Player  can avoid losing G from position v
⇐⇒

G = (V ,V,V, E) ⊧ [gfpWx . (Vx ∧ ∃y(Exy ∧Wy))
∨ (Vx ∧ ∀y(Exy →Wy)](v)

G is complete for LFP (via quantifier-free reductions on finite structures)

Erich Grädel Logics for dependence and independence

�e gfp-fragment of LFP

�e fragment posGFP of least fixed-point logic can be defined in two

equivalent ways:

() posGFP is the closure of the set of formulae of form [gfpR.x . φ(R, x)](x),
where φ(Rx) is in FO, under disjunction, conjunction, quantifiers, and
applications of gfp.

() posGFP is the set of relations definable by simultaneous greatest fixed

points of systems of first-order formulae.

It is well-known that these two formulations are equivalent.

Erich Grädel Logics for dependence and independence

�e gfp-fragment of LFP

�e fragment posGFP of least fixed-point logic can be defined in two

equivalent ways:

() posGFP is the closure of the set of formulae of form [gfpR.x . φ(R, x)](x),
where φ(Rx) is in FO, under disjunction, conjunction, quantifiers, and
applications of gfp.

() posGFP is the set of relations definable by simultaneous greatest fixed

points of systems of first-order formulae.

It is well-known that these two formulations are equivalent.

Erich Grädel Logics for dependence and independence

�e alternation hierarchy

Fixed-point formulae become difficult to read and evaluate if they involve

more than (very) few alternations of least and greatest fixed point.

Alternation between lfp- and gfp- operations define a hierarchy analogous to

the Σ/Π hierarchies in first-order and second-order logic.

�e fragment posGFP is at the bottom level of the alternation hierarchy of

least fixed-point logic.

�eorem. (Immerman)

On finite structures the alternation hierarchy collapses: LFP ≡ posGFP.

However, this is not the case in general. For instance on (N,+, ⋅) the
alternation hierarchy of LFP is strict.

Erich Grädel Logics for dependence and independence

�e alternation hierarchy

Fixed-point formulae become difficult to read and evaluate if they involve

more than (very) few alternations of least and greatest fixed point.

Alternation between lfp- and gfp- operations define a hierarchy analogous to

the Σ/Π hierarchies in first-order and second-order logic.

�e fragment posGFP is at the bottom level of the alternation hierarchy of

least fixed-point logic.

�eorem. (Immerman)

On finite structures the alternation hierarchy collapses: LFP ≡ posGFP.

However, this is not the case in general. For instance on (N,+, ⋅) the
alternation hierarchy of LFP is strict.

Erich Grädel Logics for dependence and independence

posGFP versus existential second-order logic

Proposition. (Knaster, Tarski) �e greastet fixed point of a monotone operator

is the union of all its post-fixed-points:

gfp(F) = ⋃{R ∶ F(R) = R} = ⋃{R ∶ F(R) ⊃ R}

As a consequence, it immediately follows that posGFP is a fragment of Σ:

[gfpRx . φ(Rx)](z) ≡ ∃R(Rz ∧ ∀x(Rx → φ(R, x)))

Erich Grädel Logics for dependence and independence

Inclusion logic is closed under union of teams

Dependence logic is closed downwards: If A ⊧X ψ and Y ⊆ X then A ⊧Y ψ.
�is is not true for inclusion statements x ⊆ y.

However, inclusion logic also has an interesting closure property.

Proposition. If A ⊧X ψ and A ⊧Y ψ, then A ⊧X∪Y ψ

For formulae x ⊆ y and for first-order formulae this is obvious.

Closure under union is obviously preserved by ∧ and ∀.

Disjunction: assume that A ⊧X ψ ∨ φ and A ⊧Y ψ ∨ φ.
�en X = Xψ ∪ Xφ such that A ⊧Xψ ψ and A ⊧Xφ φ.
Similarly Y = Yψ ∪ Yφ such that A ⊧Yψ ψ and A ⊧Yφ φ.

By induction hypothesis A ⊧Xψ∪Yψ ψ and A ⊧Xφ∪Yφ φ, and therefore
A ⊧X∪Y ψ ∨ φ.

Erich Grädel Logics for dependence and independence

Inclusion logic is closed under union of teams

Dependence logic is closed downwards: If A ⊧X ψ and Y ⊆ X then A ⊧Y ψ.
�is is not true for inclusion statements x ⊆ y.

However, inclusion logic also has an interesting closure property.

Proposition. If A ⊧X ψ and A ⊧Y ψ, then A ⊧X∪Y ψ

For formulae x ⊆ y and for first-order formulae this is obvious.

Closure under union is obviously preserved by ∧ and ∀.

Disjunction: assume that A ⊧X ψ ∨ φ and A ⊧Y ψ ∨ φ.
�en X = Xψ ∪ Xφ such that A ⊧Xψ ψ and A ⊧Xφ φ.
Similarly Y = Yψ ∪ Yφ such that A ⊧Yψ ψ and A ⊧Yφ φ.

By induction hypothesis A ⊧Xψ∪Yψ ψ and A ⊧Xφ∪Yφ φ, and therefore
A ⊧X∪Y ψ ∨ φ.

Erich Grädel Logics for dependence and independence

Inclusion logic is closed under union of teams

Dependence logic is closed downwards: If A ⊧X ψ and Y ⊆ X then A ⊧Y ψ.
�is is not true for inclusion statements x ⊆ y.

However, inclusion logic also has an interesting closure property.

Proposition. If A ⊧X ψ and A ⊧Y ψ, then A ⊧X∪Y ψ

For formulae x ⊆ y and for first-order formulae this is obvious.

Closure under union is obviously preserved by ∧ and ∀.

Disjunction: assume that A ⊧X ψ ∨ φ and A ⊧Y ψ ∨ φ.
�en X = Xψ ∪ Xφ such that A ⊧Xψ ψ and A ⊧Xφ φ.
Similarly Y = Yψ ∪ Yφ such that A ⊧Yψ ψ and A ⊧Yφ φ.

By induction hypothesis A ⊧Xψ∪Yψ ψ and A ⊧Xφ∪Yφ φ, and therefore
A ⊧X∪Y ψ ∨ φ.

Erich Grädel Logics for dependence and independence

Inclusion logic is closed under union of teams

Dependence logic is closed downwards: If A ⊧X ψ and Y ⊆ X then A ⊧Y ψ.
�is is not true for inclusion statements x ⊆ y.

However, inclusion logic also has an interesting closure property.

Proposition. If A ⊧X ψ and A ⊧Y ψ, then A ⊧X∪Y ψ

For formulae x ⊆ y and for first-order formulae this is obvious.

Closure under union is obviously preserved by ∧ and ∀.

Disjunction: assume that A ⊧X ψ ∨ φ and A ⊧Y ψ ∨ φ.
�en X = Xψ ∪ Xφ such that A ⊧Xψ ψ and A ⊧Xφ φ.
Similarly Y = Yψ ∪ Yφ such that A ⊧Yψ ψ and A ⊧Yφ φ.

By induction hypothesis A ⊧Xψ∪Yψ ψ and A ⊧Xφ∪Yφ φ, and therefore
A ⊧X∪Y ψ ∨ φ.

Erich Grädel Logics for dependence and independence

Inclusion logic is closed under union of teams

Existential quantification: assume that A ⊧X ∃y ψ and A ⊧Y ∃y ψ.
�ere exist functions FX ∶ X → P(A) and FY ∶ Y → P(A) such that
A ⊧X[y↦FX] ψ and A ⊧X[y↦FX] ψ. Define F ∶ X ∪ Y → P(A) by

F(s) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

FX(s) if s ∈ X ∖ Y

FY(s) if s ∈ Y ∖ X

FX(s) ∪ FY(s) if s ∈ X ∩ Y

�en (X ∪ Y)[y ↦ F] = X[y ↦ FX] ∪ Y[y ↦ FY]. Hence A(X∪Y)[y↦F] ⊧ ψ
and therefore A ⊧X∪Y ∃y ψ.

Remark. Notice that dependence logic, independence logic and in fact even

constancy formulae =(x) are not closed under unions of teams.

Corollary. For every structure A, every team X and every formula ψ ∈ Inc
there is the unique maximal subteam Xmax ⊆ X with A ⊧Xmax ψ.

Erich Grädel Logics for dependence and independence

Inclusion logic is closed under union of teams

Existential quantification: assume that A ⊧X ∃y ψ and A ⊧Y ∃y ψ.
�ere exist functions FX ∶ X → P(A) and FY ∶ Y → P(A) such that
A ⊧X[y↦FX] ψ and A ⊧X[y↦FX] ψ. Define F ∶ X ∪ Y → P(A) by

F(s) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

FX(s) if s ∈ X ∖ Y

FY(s) if s ∈ Y ∖ X

FX(s) ∪ FY(s) if s ∈ X ∩ Y

�en (X ∪ Y)[y ↦ F] = X[y ↦ FX] ∪ Y[y ↦ FY]. Hence A(X∪Y)[y↦F] ⊧ ψ
and therefore A ⊧X∪Y ∃y ψ.

Remark. Notice that dependence logic, independence logic and in fact even

constancy formulae =(x) are not closed under unions of teams.

Corollary. For every structure A, every team X and every formula ψ ∈ Inc
there is the unique maximal subteam Xmax ⊆ X with A ⊧Xmax ψ.

Erich Grädel Logics for dependence and independence

Inclusion statements and greatest fixed points

Given a team X, the maximal subteam Xmax ⊆ X satisfying inclusion statement
(xi ⊆ x j) is naturally definable by a gfp-induction:

X ∶= X,
Xα+ ∶= {s ∈ Xα ∶ (∃s′ ∈ Xα)s′(x j) = s(xi)}
Xλ = ⋂α<λ Xα for limit ordinals λ.

Hence Xmax is uniformly definable by the posGFP-formula

ψ(X , z) ∶= [gfpYx . Xx ∧ ∃y(Y y ∧ y j = xi)](z)

Further A ⊧X (xi ⊆ x j) if, and only if (A, X) ⊧ ∀z(Xz → ψ(X , z))

�is generalizes to all formulae of inclusion logic.

Erich Grädel Logics for dependence and independence

Inclusion statements and greatest fixed points

Given a team X, the maximal subteam Xmax ⊆ X satisfying inclusion statement
(xi ⊆ x j) is naturally definable by a gfp-induction:

X ∶= X,
Xα+ ∶= {s ∈ Xα ∶ (∃s′ ∈ Xα)s′(x j) = s(xi)}
Xλ = ⋂α<λ Xα for limit ordinals λ.

Hence Xmax is uniformly definable by the posGFP-formula

ψ(X , z) ∶= [gfpYx . Xx ∧ ∃y(Y y ∧ y j = xi)](z)

Further A ⊧X (xi ⊆ x j) if, and only if (A, X) ⊧ ∀z(Xz → ψ(X , z))

�is generalizes to all formulae of inclusion logic.

Erich Grädel Logics for dependence and independence

Translating inclusion logic into fixed-point logic

For every formula ψ(y) of inclusion logic there is a formula φ(X , y) in
posGFP, such that, for all structures A and all teams X,

A ⊧X ψ(y) ⇐⇒ FA
φ (X) ⊇ X ⇐⇒ (A, X) ⊧ ∀X(Xy → φ(X , y))

For a sentence ψ of Inc, also φ ∈ posGFP is a sentence, which is equivalent to ψ.

Corollary. Every class of finite structures definable in Inc is also definable in

posGFP, and hence in P.

Erich Grädel Logics for dependence and independence

Translating posGFP to inclusion logic

For every formula ψ(X , z) in posGFP one can construct a formula φ(z) ∈ Inc
such that, for all A and all X

A ⊧X φ ⇐⇒ FA
ψ (X) ⊇ X ⇐⇒ (A, X) ⊧s ψ for all s ∈ X

Intuition. In a gfp-induction, we justify that a tuple in z ∈ Xα survives the

next iteration, i.e. that z ∈ Xα+, by means of statements of form y ∈ Xα where

y is related to z by first-order operations (or, equivalently, moves in a
first-order game). By evaluating the corresponding Inc-formula on a team

(with variables x) that represents Xα twe can use inclusion statements y ⊆ x
for expressing that y ∈ Xα .

Erich Grädel Logics for dependence and independence

Translating posGFP to inclusion logic

For every formula ψ(X , z) in posGFP one can construct a formula φ(z) ∈ Inc
such that, for all A and all X

A ⊧X φ ⇐⇒ FA
ψ (X) ⊇ X ⇐⇒ (A, X) ⊧s ψ for all s ∈ X

Intuition. In a gfp-induction, we justify that a tuple in z ∈ Xα survives the

next iteration, i.e. that z ∈ Xα+, by means of statements of form y ∈ Xα where

y is related to z by first-order operations (or, equivalently, moves in a
first-order game). By evaluating the corresponding Inc-formula on a team

(with variables x) that represents Xα twe can use inclusion statements y ⊆ x
for expressing that y ∈ Xα .

Erich Grädel Logics for dependence and independence

Illustration via safety games

ψ(W , x) = (Vx ∧ ∃y(Exy ∧Wy)) ∨ (Vx ∧ ∀y(Exy →Wy))

G = (V ,V,V, E) ⊧ [gfpWx .ψ(W , x)](v) if Player  can avoid losing from
v. Further FGψ (W) ⊇W if Player  has a strategy not to leaveW .

Translation to inclusion logic (first attempt):

φ(x) = (Vx ∧ ∃y(Exy ∧ y ⊆ x)) ∨ (Vx ∧ ∀y(¬Exy ∨ y ⊆ x))

We want to prove that FGψ (W) ⊇W ⇐⇒ G ⊧W φ(x).

Problem: φ is a disjunction and we have to split the teamW into the subteams

W ∩ V andW ∩ V and check that G ⊧W∩V ∃y(Exy ∧ y ⊆ x) and
G ⊧W∩V ∀y(¬Exy ∨ y ⊆ x). But now only the values for x in the subteams are
available for the inclusion statements. �e formula is not correct.

Erich Grädel Logics for dependence and independence

Illustration via safety games

ψ(W , x) = (Vx ∧ ∃y(Exy ∧Wy)) ∨ (Vx ∧ ∀y(Exy →Wy))

G = (V ,V,V, E) ⊧ [gfpWx .ψ(W , x)](v) if Player  can avoid losing from
v. Further FGψ (W) ⊇W if Player  has a strategy not to leaveW .

Translation to inclusion logic (corrected):

φ(x) = ∃z(z ⊆ x ∧ ((Vx ∧ ∃y(Exy ∧ y ⊆ z)) ∨ (Vx ∧ ∀y(¬Exy ∨ y ⊆ z))

Claim. FGψ (W) ⊇W ⇐⇒ G ⊧W φ(x).

Proof. Choose for z at each assignment all values that x takes inW . φ is a
disjunction and we have to split the teamW into the subteamsW ∩ V and
W ∩ V and check that G ⊧W∩V ∃y(Exy ∧ y ⊆ z) and
G ⊧W∩V ∀y(¬Exy ∨ y ⊆ z). Also in the subteams z takes all values inW ,
hence y ⊆ z correctly expresses that y ∈W .

Erich Grädel Logics for dependence and independence

Inclusion logic and least fixed-point logic

To summarize

�eorem. (Galliani and Hella) For every formula ψ(X , z) in posGFP one can
construct a formula φ(z) ∈ Inc, and vice versa, such that, for all A and all X

A ⊧X φ ⇐⇒ FA
ψ (X) ⊇ X ⇐⇒ (A, X) ⊧s ψ for all s ∈ X

For the case of sentences, ψ and φ are equivalent.

Corollary. For sentences, inclusion logic and posGFP have the same

expressive power.

Corollary. On finite structures, incusion logic and LFP have the same

expressive power. In particular, on ordered finite structures, inclusion logic

captures P.

Erich Grädel Logics for dependence and independence

Inclusion logic and least fixed-point logic

To summarize

�eorem. (Galliani and Hella) For every formula ψ(X , z) in posGFP one can
construct a formula φ(z) ∈ Inc, and vice versa, such that, for all A and all X

A ⊧X φ ⇐⇒ FA
ψ (X) ⊇ X ⇐⇒ (A, X) ⊧s ψ for all s ∈ X

For the case of sentences, ψ and φ are equivalent.

Corollary. For sentences, inclusion logic and posGFP have the same

expressive power.

Corollary. On finite structures, incusion logic and LFP have the same

expressive power. In particular, on ordered finite structures, inclusion logic

captures P.

Erich Grädel Logics for dependence and independence

