Nordic Spring School in Logic 2013 Sophus Lie Conference Center, Nordfjordeid Lectures on Models of Arithmetic Ali Enayat, University of Gothenburg

Lecture 2: Elementary Extensions

1. Theorem. Every countable model \mathcal{M} of PA has a proper elementary end extension.

Proof: Let \mathbb{B} be the Boolean algebra of all parametrically definable subsets of M, \mathcal{F} be the collection of all parametrically definable functions from Mto M, and \mathcal{F}_{bd} be the collection of all $f \in \mathcal{F}$ such that the range of f is bounded in \mathcal{M} . Fix an enumeration $\langle f_n : n \in \omega \rangle$ of \mathcal{F}_{bd} .

It is not hard to construct $S_0 \supseteq S_1 \supseteq \cdots$ such that (a) $S_n \in \mathbb{B}$, (b) S_n is unbounded in M, and (c) f_n is constant on S_n . Let \mathcal{U}_0 be the Fréchet filter in the sense of \mathcal{M} . It is not hard to see $\{S_n : n \in \omega\} \cup \mathcal{U}_0$ uniquely extends to is a nonprincipal ultrafilter \mathcal{U} over \mathbb{B} .

Define \sim on \mathcal{F} via:

$$f \sim g \iff \{m \in M : f(m) = g(m)\} \in \mathcal{U}.$$

Let $M^* := \mathcal{F}/\sim$. For [f], [g], and [h] in M, define $+_M$ by

$$[f] +_M [g] = [h] \iff \{m \in M : f(m) + g(m) = h(m)\} \in \mathcal{U}.$$

Similarly, one can define \cdot_M and $<_M$. This gives rise to \mathcal{M}^* .

For each $m \in M$, let $c_m : M \to \{m\}$ be the constant *m*-function. This defines an embedding $m \mapsto_j [c_m]$ from \mathcal{M} into \mathcal{M}^* .

1.1. Loś-style Theorem. For any first order formula $\varphi(x_0, \dots, x_{k-1})$ in the language of arithmetic, and any sequence $[f_0], \dots, [f_{k-1}]$ from M^* , the following two conditions are equivalent:

(a) $\mathcal{M}^* \vDash \varphi([f_0], \cdots, [f_{k-1}]);$ (b) $\{m \in M : \mathcal{M} \vDash \varphi(f_0(n), \cdots, f_{k-1}(n))\} \in \mathcal{U}.$ **Proof of 1.1:** Routine induction of the complexity of φ , except for the existential step case, where the "least number principle" is invoked.

Therefore the mapping j is an elementary embedding. Since the equivalence class of the identity function i(m) = m is not in the range of j (since $\mathcal{U}_0 \subseteq \mathcal{U}$), this shows that \mathcal{M}^* is a proper elementary extension of \mathcal{M} . To see that \mathcal{M}^* end extends \mathcal{M} , suppose $\mathcal{M}^* \models [f] < [c_{m_0}]$ for some $m_0 \in \mathcal{M}$. Then by the Loś-style Theorem, we have

$$\overbrace{\{m \in M : \mathcal{M} \vDash f(m) < m\}}^{X} \in \mathcal{U}.$$

Let f'(m) := f(m) if $m \in X$, and otherwise f'(m) := 0. Note that [f'] = [f]. Moreover, $f' \in \mathcal{F}_{bd}$ and therefore $f' = f_k$ for some $k \in \omega$, which in turn implies (by design) that f' is constant on S_k with some value $m_1 \in M$. Hence $\mathcal{M}^* \models [f] = [c_{m1}]$.

2. Theorem. The following scheme is provable in PA (and is known as the collection scheme).

$$(\forall x < z \exists y \varphi(x, y, z)) \to (\exists v \forall x < z \exists y < v \varphi(x, y, z)).$$

3. Theorem (Gaifman splitting, special case). Suppose \mathcal{M} and \mathcal{N} are models of PA with $\mathcal{M} \preceq \mathcal{N}$, and let $\overline{\mathcal{M}}$ be the submodel of \mathcal{N} whose universe is the convex hull of \mathcal{M} in \mathcal{N} . Then:

$$\mathcal{M} \preceq_{\mathrm{cof}} \overline{\mathcal{M}} \preceq_{\mathrm{end}} \mathcal{N}.$$

Proof: It suffices to show that $\mathcal{M}^* \preceq \mathcal{N}$. We use the Tarski-test by supposing

$$\mathcal{N} \vDash \exists x \ \varphi(a, x),$$

where $a \in M^*$. Let $c \in M$ such that each $a_i < c$. Then, by invoking Collection in \mathcal{M} , there must be some $b \in M$ such that \mathcal{M} satisfies the sentence

$$\forall z < c \ (\exists x \varphi(z, x) \to \exists x < b \ \varphi(z, x)).$$

Since \mathcal{N} satisfies the same sentence, this shows that we can find $c \in M^*$ such that $\mathcal{N} \models \varphi(a, c)$. \Box .

3.1. Corollary. Every nonstandard model of PA has arbitrarily large cofinal extensions.

- \mathcal{N} is a *conservative* elementary extension of \mathcal{M} , written $\mathcal{M} \prec_{\text{cons}} \mathcal{N}$ if the intersection of any parametrically definable subset of \mathcal{N} with M is also parametrically definable in \mathcal{M} .
- \mathcal{N} is a *minimal* elementary extension of \mathcal{M} if $\mathcal{M} \prec \mathcal{N}$ and the only elementary submodel of \mathcal{N} properly extending \mathcal{M} is \mathcal{N} itself.

4. Proposition. *Conservative extensions of models of* PA *are end extensions.*

5. Theorem. Every countable nonstandard model of PA has a proper cofinal minimal elementary extension.

6. Open Problem (Problem 2 of Kossak-Schmerl). *Is there a nonstandard model of* **PA** *with no minimal elementary extension*?

7. Theorem. Suppose \mathcal{L} is a countable language extending \mathcal{L}_A . (a) (MacDowell-Specker 1959) Every model \mathcal{M} of $\mathsf{PA}(\mathcal{L})$ has a proper elementary end extension.

(b) (Gaifman 1972, Phillips 1974) In the above, \mathcal{N} can be required to be both minimal and conservative extension of \mathcal{M} .

• In what follows $\prod_{\mathcal{U}} \mathcal{M}$ denotes the so-called Skolem (or definable) ultrapower obtained by considering only functions from M to M that are parametrically definable in \mathcal{M}

7.1. Lemma.

(a) (\mathcal{M} -completeness) $\mathcal{M} \prec_{\text{end}} \prod_{\mathcal{U}} \mathcal{M}$ iff for each m in $M, M \to (\mathcal{U})^1_m$, i.e., for any \mathcal{M} -parametrically definable $f : M \to \{0, 1, \dots, m-1\}$, f is constant on a member of \mathcal{U} .

(b) (\mathcal{M} -minimality) $\mathcal{M} \prec_{\min} \prod_{\mathcal{U}} \mathcal{M}$ iff $M \to (\mathcal{U})_2^2$, i.e., for any \mathcal{M} -parametrically definable $f : [M]^2 \to \{0, 1\}$, some member $X \in \mathcal{U}$ is homogeneous for f, i.e., $|f([X]^2)| = 1$.

(c) (\mathcal{M} -iterability) $\mathcal{M} \prec_{cons} \prod_{\mathcal{U}} \mathcal{M}$ is equivalent to each of the following:

(c₁) For each \mathcal{M} -parametrically definable $f: M \to M$, $\{m \in M : f^{-1}(m) \in \mathcal{U}\}$ is parametrically definable in \mathcal{M} .

(c₂) For each \mathcal{M} -parametrically definable $X \subseteq M$, and $m \in M$,

$$(X)_m = \{ x \in M : \langle m, x \rangle \in X \}.$$

- $(c_4) M \to (\mathcal{U})_2^3.$
- $(c_5) \ \forall m \in \omega \ \forall a \in M \ M \to (\mathcal{U})_a^m.$

It is known that for each fixed natural number n, Σ_n -truth is definable within \mathcal{M} . Therefore we can internally arrange all parametrically Σ_n -definable functions $f: \mathcal{M} \to \mathcal{M}$, as

$$\{f_n(x,m): n < \omega, m \in M\}.$$

More specifically, for any $n < \omega$, and for any parameter m in M, $f_n(x, m)$ is defined by some Σ_n -formula $\psi(x, y, m)$ in \mathcal{M} , i.e.,

$$\forall a \forall b f_n(a, m) = b \text{ iff } \mathcal{M} \models \psi(a, b, m)$$

Note that we can afford to use a single parameter m thanks to coding functions available in PA. Using both an *external* induction and an *internal* induction we will construct a doubly-indexed sequence of parametrically definable subsets of \mathcal{M} :

$$\{X_{m,n}: n \in \omega, m \in M\}$$

which can be arranged as the following $M \times \omega$ matrix:

·
•
. /

Suppose $\langle X_m : m \in M \rangle$ is a definable sequence of unbounded definable subsets of \mathcal{M} with the property that $X_m \supseteq X_{m'}$ for m < m'. Even though $\bigcap_{m \in M} X_m$ might be empty, one can (internally) define an unbounded subset $\bigodot_{m \in M} X_m$ which is "almost contained" in each X_m , i.e., for each $m \in M$, the set $(\bigcirc_{m \in M} X_m) \setminus X_m$ is \mathcal{M} -finite (i.e., bounded in \mathcal{M}). This is done by the following recursive definition within \mathcal{M} :

- c_0 = the least member of X_0 .
- c_{m+1} = the first member of $\bigcap_{i \leq m} X_i$ which is greater than c_{m-1} .

Now let $\bigcup_{m \in M} X_m = \{c_m : m \in M\}.$

We can now construct our matrix column-by-column:

Let $X_{0,0} = M$ and suppose for some $k \ge 0$ we have constructed the $(k+1)^{th}$ column up to some "integer" J of \mathcal{M} , i.e., we have constructed $\langle X_{m,k} : m \le J \rangle$ such that for each $m \le J$, $X_{m,k}$ is unbounded in \mathcal{M} and $f_k(x,m)$ is either one-to-one or constant on $X_{m+1,k}$. Thanks to the provability of the formalized version of Ramsey's theorem in PA we can construct an unbounded definable unbounded subset $X_{J+1,m}$ of $X_{J,m}$ on which $f_k(x,J)$ is one-to-one or constant. Assuming that for some $k < \omega$ the column $\langle X_{m,k} : m \in M \rangle$ has been constructed we begin the next column (by an external induction) by letting $X_{0,k+1} = \bigcup_{m \in M} X_{m,k}$.

Thus we have constructed a matrix of definable subsets of \mathcal{M} satisfying the following conditions:

- 1. For each $n < \omega$ and $m \in M$, $X_{m,n}$ is unbounded in \mathcal{M} and $f_n(x,m)$ is either one-to-one or constant on $X_{m+1,n}$.
- 2. For each $n < \omega$ and $m \in M$, $X_{m',n} \subseteq X_{m,n}$ if $m \leq m'$. More generally: $X_{m',n'} \setminus X_{m,n}$ is finite in the sense of \mathcal{M} , provided n < n' or (n' = n and $m \leq m')$..

Let $\mathcal{U}_1 := \{ X_{m,n} : m \in M, n \in \omega \} \cup \{ M \setminus \{0, 1, ..., m\} : m \in M \}.$

It is routine to verify that \mathcal{U}_1 generates a unique nonprincipal ultrafilter over the definable subsets of \mathcal{M} such that the definable ultrapower $\prod_{\mathcal{U}} \mathcal{M}$ forms a *minimal conservative* elementary end extension of \mathcal{M} .

3. In contrast with the usual construction of ultrapowers in general model theory where *all* functions from some index set I into the universe M of a model \mathfrak{M} are used in the formation of the ultrapower, model theorists of arithmetic have found it useful to consider "limited" ultrapowers in which a manageable family of functions from I to M are selected to craft the ultrapower. The following three varieties (a), (b), and (c) of limited ultrapowers are the most well-known in the model theory of arithmetic:

(a) Skolem-Gaifman ultrapowers, where the index set I is identical to the universe M of the model \mathcal{M} , and the family of functions used in the formation of the ultrapower is the set of all \mathcal{M} -definable ones. This sort of ultrapower was implicitly used by Skolem in his original construction of a nonstandard model of arithmetic, and they were employed by MacDowell-Specker in the proof of their celebrated theorem. Later, in the work of Gaifman, Skolem ultrapowers were refined to a high degree of sophistication to produce a variety of striking results. One of Gaifman's key insights was that the Skolem ultrapower construction can be iterated along *any* linear order with appropriately chosen ultrafilters.

(b) Kirby-Paris ultrapowers, where the index is a regular cut I of \mathcal{M} , and the family of functions used in the formation of the ultrapower are functions f such that for some function g coded in \mathcal{M} , $f = g \upharpoonright I$. This has proved to a valuable tool in the study of cuts of nonstandard models of arithmetic.

(c) Paris-Mills ultrapowers, where the index set is some topped initial segment of \mathcal{M} , and the functions used are those that are coded in \mathcal{M} . This type of ultrapower was first considered by Paris and Mills to show, among other things, that one can arrange a model of PA in which an externally countable nonstandard integer H such that the external cardinality of Superexp(2, H)is of any prescribed infinite cardinality. Here Superexp(x, y) is the result of y iterations of the exponential function 2^x . Iterated (unlimited) ultrapowers

- Suppose
 - (a) $\mathcal{M} = (M, \cdots)$ is a structure,
 - (b) \mathcal{U} is an ultrafilter over $\mathcal{P}(\omega)$, and
 - (c) \mathbb{L} is a linear order.

One can build the \mathbb{L} -iterated ultrapower of \mathcal{M} modulo \mathcal{U} .

$$\mathcal{M}^* := \prod_{\mathcal{U}, \mathbb{L}} \mathcal{M}.$$

• A key definition (reminiscent of Fubini):

$$\mathcal{U}^2 := \{ X \subseteq \omega^2 : \{ a \in \omega : \overbrace{\{b \in \omega : (a, b) \in X\}}^{(X)_a} \in \mathcal{U} \} \in \mathcal{U} \}$$

• More generally, for each nonzero $n \in \omega$:

$$\mathcal{U}^{n+1} := \{ X \subseteq \omega^{n+1} : \{ a \in \omega : (X)_a \in \mathcal{U}^n \} \in \mathcal{U} \},\$$

where

$$(X)_a := \{ (b_1, \dots, b_n) : (a, b_1, \dots, b_n) \in X \}.$$

Let Υ be the set of terms τ of the form $f(l_1, \dots, l_n)$, where $n \in \omega$, $f: \omega^n \to M$ and $(l_1, \dots, l_n) \in [\mathbb{L}]^n$.

• The universe M^* of \mathcal{M}^* consists of equivalence classes $\{[\tau] : \tau \in \Upsilon\}$, where the equivalence relation \sim at work is defined as follows: given $f(l_1, \dots, l_r)$ and $g(l'_1, \dots, l'_s)$ from Υ , first suppose that

$$\left(l_1,\cdots,l_r,l_1',\cdots,l_s'\right)\in [\mathbb{L}]^{r+s};$$

let p := r + s, and define:

$$f(l_1,\cdots,l_r) \sim g(l'_1,\cdots,l'_s)$$

 iff

$$\{(i_1,\cdots,i_p)\in\omega^p:f(i_1,\cdots,i_r)=g(i_{r+1},\cdots,i_p)\}\in\mathcal{U}^p.$$

More generally: given $f(l_1, \dots, l_r)$ and $g(l'_1, \dots, l'_s)$ from Υ , let

$$P := \{l_1, \cdots, l_r\} \cup \{l'_1, \cdots, l'_s\}, \quad p := |P|,$$

and relabel the elements of P in increasing order as $\bar{l}_1 < \cdots < \bar{l}_p$. This relabelling gives rise to increasing sequences (j_1, j_2, \cdots, j_r) and (k_1, k_2, \cdots, k_s) of indices between 1 and p such that

$$l_1 = \bar{l}_{j_1}, l_2 = \bar{l}_{j_2}, \cdots, l_r = \bar{l}_{j_r}$$

and

$$l'_1 = \bar{l}_{k_1}, l'_2 = \bar{l}_{k_2}, \cdots, l'_s = \bar{l}_{k_s}.$$

With the relabelling at hand, we can define:

$$f(l_1,\cdots,l_r) \sim g(l'_1,\cdots,l'_s)$$

 iff

$$\{(i_1,\cdots,i_p)\in\omega^p:f(i_{j_1},\cdots,i_{j_r})=g(i_{k_1},\cdots,i_{k_s})\}\in\mathcal{U}^p.$$

- We can also use the previous relabelling to define other operations and relations of \mathcal{M}^*
- For $m \in M$, let c_m be the constant *m*-function on ω , i.e., $c_m : \omega \to \{m\}$. For any $l \in \mathbb{L}$, we can identify the element $[c_m(l)]$ with *m*.
- We shall also identify [id(l)] with l, where $id : \omega \to \omega$ is the identity function (WLOG $\omega \subseteq M$).
- Therefore $M \cup \mathbb{L}$ can be viewed as a subset of M^* .

7.2. Theorem (Gaifman). For every formula $\varphi(x_1, \dots, x_n)$, and every $(l_1, \dots, l_n) \in [\mathbb{L}]^n$, the following two conditions are equivalent:

(a) $\mathcal{M}^* \vDash \varphi(l_1, l_2, \cdots, l_n).$

(b)
$$\{(i_1, \cdots, i_n) \in \omega^n : \mathcal{M} \vDash \varphi(i_1, \cdots, i_n)\} \in \mathcal{U}^n.$$

• The above construction can be miniaturized in a number of contexts, including the 3 types of ultrapowers mentioned earlier. More on this topic, in tomorrow's lecture.