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The finitary total functionals

I Last Monday we defined
i) The finite sets Dn(σ) for each type σ.
ii) The set Dω(σ) of finitary partial functionals of type σ.
iii) The Scott domains D(σ) as the completion of Dω(σ).

I Today we will look at typed structures in general.
I We will start with defining the hereditarily finitary total

functionals.
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Finite types revisited

I We defined the finite types by closing Nat under
τ, δ 7→ (τ → δ).

I We have taken the liberty to let σ, τ → δ be short for
(σ → (τ → δ)).

I Pushing this further, we use the convention that

τ1, . . . , τn → δ

is another way of writing

(τ1 → (τ2 → · · · → (τn → δ) · · · )) .
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Finite types revisited

I By an easy proof by induction we see that any type σ can
be described on a normal form as

σ = τ1, . . . , τn → Nat .

I This also means that if we define a class of objects of types

τ1, . . . , τn → Nat ,

we implicitly define a class of objects of all types.
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The Prime Structure

Definition

1. Let Fn(Nat) = {0, . . . ,n}.
2. When σ = τ → δ, let Fn(σ) be the set of all functions from
Fn(τ) to Fn(δ).
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The Prime Structure

Definition
If σ is a type and n ≤ m we define, by recursion on σ

I ησn,m : Fn(σ)→ Fm(σ)

I πσn,m : Fm(σ)→ Fn(σ)

as follows:
i) ηNat

n,m(k) = k for k ≤ n.

ii) πNat
n,m(k) = min{k ,n} for k ≤ m.

iii) ησn,m(Φ)(ψ) = ηδn,m(Φ(πτn,m(ψ))) when σ = τ → δ, Φ ∈ Fn(σ)
and ψ ∈ Fm(τ).

iv) πσn,m(Ψ)(φ) = πδn,m(Ψ(ητn,m(φ))) when σ is as above,
Ψ ∈ Fm(σ) and φ ∈ Fn(τ).
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The Prime Structure

Lemma

a) For each n and σ, both ησn,n and πσn,n will be the identity
function on Fn(σ).

b) If n ≤ m ≤ k then for all types σ we have that

ησn,k = ησm,k ◦ ησn,m

and that
ησn,m = πσm,k ◦ ησn,k .

The proofs are easy, but instructive, by induction on σ.
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The Prime Structure

I This lemma shows that there will be a total typed structure
Fω = {Fω(σ)}σ type that essentially is the directed limit
(co-limit) of the Fn’s.

I We will call this the Prime Typed Structure, indicating that it
is related to the concept of prime model in model theory.
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The Kernel

For a while, we let T = {T (σ)}σ type be a typed structure with
T (Nat) = N and with the extra properties:

I T is a model for typed λ-calculus.
I The functions

i) Suc(n) = n + 1
ii) Pred(n) = max{0,n − 1}
iii)

Ifzero(a,b, c) =

{
b if a = 0
c if a > 0

are in T .
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The Kernel

I We may then define the corresponding maps ησn,T and πσn,T ,
and the union of the images of the ησn,T ’s will form a typed
substructure that is isomorphic, with respect to application,
to Fω.

I This image will be called the kernel of T . T is rudimentary
closed if the definition of the kernel of T is sound.

I Any kernel will be isomorphic to the prime structure,
provided N is a subset of the interpretation of the base
type.

I The elements of the kernel is also known as the
hereditarily finitary elements of T .
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The Kernel

I Alternativly we may describe πn,T ◦ ησn,T : T (σ)→ T (σ) by
a trivial induction on the type as the function (·)n defined by

I (m)n = m if m ≤ n.
I (m)n = n if m > n.
I (Φ)n(ψ) = (Φ((ψ)n))n if Φ ∈ A(τ → δ) and ψ ∈ A(τ).

The kernel will be exactly the union of the immages of these
operators.
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A digression

I It is customary to study typed structures with some closure
properties, but without too wild objects.

I One way to express this is to require that our structure is a
model of Gödel’s T but does not contain the functional 2E .

I Gödel’s T essentially is a language for higher order
primitive recursion.

I

2E(f ) =

{
0 if ∀n(f (n) = 0)
1 if ∃n(f (n) > 0)
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A digression

I If T is a total typed structure satisfying these conditions we
can express and prove the following theorem:
If Φ = limn→∞Φn then Φ = limn→∞(Φn)n.

I A sequence in T (σ) will here just be an element of
T (Nat→ σ).

I We say that Φ = limn→∞Φn in T (σ) if there is a Ψ ∈ T (σ)
such that

∀~x ∈ T (~τ)∀n ≥ Ψ(~x)(Φ(~x) = Φn(~x)) .
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Kleene’s first model

I We defined a typed structure as a hierarchy of functionals.
I However, in providing our examples of Dω, D and Fω we

swept a lot of simple, but tedious, details under the carpet
while claiming that we actually did construct typed
structures.
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Kleene’s first model

I We will now introduce the concept of intensional typed
structures, and with these, we will also obtain the tools
needed to lift up our carpet and handle the details that are
under it.

I We will start with one important example.
I It is based on Kleene’s first model.
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Kleene’s first model

I Let φe be the partial function from N to N defined by
algorithm no. e, e. g. via a natural enumeration of the
Turing Machines.

I Kleene’s first model K1 consists of the set N and the partial
application operator

e · d ' φe(d) .
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Kleene’s first model

I There will be a number k such that φk (e) is an index for the
constant function with value e.

I This actually means that k · e · d = e for all e and d (recall
how to insert the left-out brackets).

I Thus k satisfies the property of the combinator K
introduced on Monday: KNM → N.
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Kleene’s first model

I In order to find a number s serving as an interpretation of
the combinator S, let us recall the property of this
combinator:

SNML→ (NL)(ML)

I Thus our specification for s is that

s · n ·m · l = (n · l) · (m · l) .
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Kleene’s first model

I Spelled out, this actually requires a number s such that we
for all n, m and l have

φφφs(n)(m)(l) ' φφn(l)(φm(l)) .

I The right hand side is computable in the three variables n,
m and s, and then we use iteration of the Sn,m-theorem.
(where the n’s and m’s are not the same in the two cases).
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Kleene’s first model

I Kleene’s first model gives us an alternative model for PCF.
I Each type σ will be interpreted as a partial equivalence

relation ≡σ on N.
I A partial equivalence relation (per) is a relation ≡ that is

symmetric and transitive, but not necessarily reflexive.
I Note that if a ≡ b then a ≡ a and b ≡ b.
I {a | a ≡ a} is called the domain of ≡, and ≡ will be an

equivalence relation on its domain.
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The per-model

I We let e ≡Nat d if φe(0) ' φd (0).
I If σ = τ → δ we let

e ≡σ d ⇔ ∀a,b(a ≡τ b → (e · a ≡δ d · b)) ,

I We let K (σ) be the domain of ≡σ for each σ.
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The per-model

I Our first example of an intensional typed structure will be
{K (σ)}σ type together with the restrictions Appτ,δ of the
Kleene operator · to each K (τ → δ)× K (τ).

I Appτ,δ will be total by definition, and what we have
constructed is an example of the more general typed
combinatory algebra.

I By restricting ourselves to each K (σ), we see that ≡σ is
definable from the application operators.

I With this property, we see that every intensional object
actually defines an extensional one:
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The per-model

I By recursion on σ we define an extensional typed structure
{EP(σ)}σ type by

I EP(Nat) = N ∪ {⊥}, and for n ∈ N = K (Nat) we let
ρNat(n) ' φn(0).

I If σ = τ → δ and e ∈ K (σ), we let ρσ(e) be the one and
only function F : EP(τ)→ EP(δ) that satisfies

F (ρτ (d)) = ρδ(e · d)

for all d ∈ K (τ).
I EP(σ) will be the image of ρσ.
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The per-model

Lemma
Let k and s be the indices of the interpretations of the
combinators K and S respectively. For all types σ, δ and τ we
have

a) k ∈ K (σ → (τ → σ)).
b) s ∈ K (σ → (τ → δ), (σ → τ), σ → δ).

The proofs are not hard, actually trivial, but are better worked
out as exercises than via a slide.
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The per-model

I The interpretation of the typed combinators ensure that the
per-model is a model of pure typed λ-calculus.

I The terms for fixed point operators in untyped λ-calculus
cannot be typed, so in order to have a model for PCF we
need sound interpretations of each Yσ.

I In order to obtain this, we actually need a generalized
version of the Myhill-Shepherdson theorem:
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The Myhill-Shepherdson Theorem

Given two expressions t and t ′ for partial numbers, t ' t ′ will
mean that they either both are defined and equal, or both are
undefined.
We write t = t ′ to mean that they are both defined and equal.

Theorem (Myhill-Shepherdson)
Let f be a partial computable function such that

φe = φd ⇒ f (e) ' f (d) .

Then there is a partial computable functional F of type 2 such
that

F (φe) = f (e)

for all e.
This F will be monotone, and finitely based.

Nordic Spring School in Logic 2013 - 26



The per-model

I It is easy to see that the per-interpretation of Nat→ Nat will
correspond to the set of partial computable functions on N.

I The Myhill-Shepherdson theorem actually tells us that the
per interpretation of (Nat→ Nat)→ Nat corresponds to the
effectively continuous functionals of type 2.
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The per-model

I In fact, the per-model corresponds to the effective version
of the Scott model.

I This is an application of the proof of the
Myhill-Shepherdson theorem.

I Since the typed least fixed point operators are effective
elements of the Scott model, they “exist" in the per-model
as well.

I Thus the per-model is a possible model for higher order
computability.
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Intensional typed structures

I In what we have done so far, there are several levels of
abstraction.

I Kleene’s first model is an example of a partial combinatory
algebra, which will in general consist of a set A, a partial
application operator · and two elements K and S obeying
the axioms of the combinators.
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Intensional typed structures

I If we interpret the base type Nat as a partial equivalence
relation ≡Nat on A, we implicitly interpret each type σ as a
partial equivalence relation ≡σ on A.

I If ≡Nat is induced from a partial function ρNat into N ∪ {⊥},
we can carry out our construction of an extensional typed
structure.

I This is called the extensional collapse of (A, ·, ρNat)
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Intensional typed structures

I We do not have to start with a partial combinatory algebra
in order to construct an extensional collapse.

I There is an intermediate concept of typed partial
combinatory algebras, where we postulate typed
application operators and typed versions of the
combinators K and S.
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Intensional typed structures

I In our next key example, the sequential procedures and
the sequential functionals, we will be in the situation where
Nat is interpreted directly as N ∪ {⊥}, but τ → δ will be
interpreted as a class of certain typed algorithms.

I The application operators will then be interpreted via an
observational semantics.

I This will be another example of what we will call an
intensional typed structure.
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Intensional typed structures

Definition
An Intensional typed structure will consist of

I A set T (σ) for each type σ such that T (Nat) ⊆ N ∪ ⊥.
I An application operator Appσ : T (σ)× T (τ)→ T (δ)

whenever σ = τ → δ.
I Objects Kτ,δ and Sτ,δ,ξ obeying the typing and rules of

typed combinators.
I Objects Caseσa of type Nat, σ, σ → σ for each

a ∈ N ∩ T (Nat) obeying:
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Intensional typed structures

Caseσa (b,N,M) =


N if b = a
M if b ∈ N ∧ b 6= a
Cσ
⊥ if b = ⊥

(reformulated using App).
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Intensional typed structures

I Let T be an intensional typed structure.
I If σ = τ → δ, a ∈ T (σ) and f : T (τ)→ T (δ), we say that a

tracks f if f (b) = Appσ(a,b) for all b ∈ T (δ).
I Each constant function of type τ → δ will be tracked: We

use the properly typed version of K :
I The identity function of type σ → σ will be tracked: We use

the properly typed version of SKK . (The two K ’s are of
different types.)

I The composition of two tracked functions f : T (δ)→ T (τ)
and g : T (τ)→ T (ξ) is tracked: If a tracks f and b tracks g,
then S(Kb)a, properly typed, tracks g ◦ f .
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The Karoubi envelope

I Each intensional typed structure T may be viewed as a
category.

I The objects will be the interpretations T (σ) when σ varies
over the types.

I The morphisms will be the set of functions that are tracked
by elements of the structure.
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The Karoubi envelope

I A morphism e : σ → σ is idempotent if ee = e.
I From the perspective of category theory, an idempotent

automorphism may be viewed as a recognizable
substructure.

I The objects of the Karoubi envelope will be pairs (T (σ), f )
where f is a trackable idempotent map on T (σ).
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The Karoubi envelope

I We think of an object (T (σ), f ) as representing the
isomorphism type of the set of fixed points of f , and we
think of the Karoubi envelope as representing all datatypes
that are implicit in our typed structure.

I The morphisms will be morphisms in T commuting with the
idempotents in question.
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The Karoubi envelope

I For most important examples, the Karoubi envelope is
richer than the simply typed structure, being closed under
finite products, finite disjoint sums and often strictly
positive induction and/or co-induction.

I However, questions related to the computational power of
a calculus of higher order algorithms may often be solved
for the full envelope just by studying the core types.

I Thus, even though a rich typed structure is an advantage
when useful programs are in need, poor typed structures
suffice for, and simplify, foundational research.
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Towards another example

I Our next example, an example that still offers challenges
for research, will be the sequential operators.

I In order to motivate this construction, let us see why the
Scott model is, in some respects, unsatisfactory.
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Full abstraction

I We have already seen that there are finite elements in the
Scott model that are not the interpretation of any
PCF-term.

I We may extend the language, and introduce a constant
with evaluation rules for objects with this property.

I One possibility will be the non-sequential conditional ⊃p of
type Nat,Nat,Nat→ Nat with the following rules:

1. ⊃p 0MN → M.
2. ⊃p k + 1MN → N.
3. ⊃p MNN → N.
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Full abstraction

I Plotkin proved that ⊃p is not PCF-definable, but that all
finitary elements in the Scott model are PCF +
⊃p-definable.

I This calculus is known as PCF+

I Even this new constant is not sufficient for defining all
elements of the per-model.

I For this we need the continuous existential quantifier ∃ω
over N.
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Full abstraction

For any typed calculus, we have the following

Definition
If M and N are closed terms of type σ, we say that M is
observationally below N, M vobs N, if whenever K is a term of
type Nat with one free variable x of type σ, we have for every k

K x
M →∗ k ⇒ K x

N →∗ k .

This means in popular terms that in any program K we can
replace the subroutine M with the subroutine N and get an
improved result.
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Full abstraction

I Two terms are operationally equivalent if they are
observationally below each other.

I A model is fully abstract if observationally equivalent
closed terms are interpreted as the same object.

I An early observed problem with the Scott model is that it is
not fully abstract.

I Robin Milner produced a fully abstract model for PCF
based on Scott domains.

I Our question will be if domain theory is the best tool for
defining models at all.
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Finite Sequential Procedures

I We will now define the finite sequential procedures as a
piece of syntactic entities.

I These procedures will have canonical interpretations in
any typed structure with a minimum of closure properties.

I The definition is by recursion.
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Definition
Let σ = τ1, . . . , τn → Nat.

a) If a ∈ N⊥ we let Cσ
a be an FSP of type σ.

We write this definition as

Cσ
a (x1, . . . , xn) = a

where xi is a variable of type τi .
(We will normally drop the upper index when it is clear from
the context.)
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Finite Sequential Procedures

Definition (continued)

b) If
I K ⊂ N is finite
I Fk (x1, . . . , xn) is an FSP of type σ for each k ∈ K
I τi = δ1, . . . , δm → Nat
I Gj is an FSP of type τ1, . . . , τn → δj for each j = 1, . . . ,m

Then
F (x1, . . . , xn) = Fk (x1, . . . , xn)

if xi(G1(x1, . . . , xn), . . . ,Gm(x1, . . . , xn)) = k ∈ K

is an FSP of type σ.
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Finite Sequential Procedures

There are a few questions that we will adress tomorrow:
I Can we evaluate an expression like

F (H1, . . . ,Hn)

where F and H1, . . . ,Hn are FSP’s, and in what sense is
that evaluation sequential?

I If F is an FSP of type τ → δ, does F map FSP’s of type τ
to FSP’s of type δ?

I What is the nature of the observational ordering of FSP’s?
I How can we move from FSP’s to sequential procedures?
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Finite Sequential Procedures

We will end today’s lecture by considering a few examples.
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Examples

Let
FL : (N⊥ × N⊥ → N⊥)→ N⊥

be defined by

FL(f ) = 0 if f (0,⊥) = 0.

Then FL can be defined by an FSP as follows:

FL(f ) = C0(f ) if f (C0(f ),C⊥(f )) = 0 .

We can define FR in a similar way.
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Examples

With the same types as on the previous slide, let

F (f ) = f (FL(f ),FR(f ))

This is defined by an FSP as follows

F (f ) = C0(f ) if f (FL(f ),FR(f )) = 0 .

Why will there be an sequential evaluation here?

We only obtain a sequential evaluation when f is given in a
sequential way, e. g. as

f (x , y) = 0 if y = 0 .
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Examples

I The importance of this example is as follows:
Even if F is clearly PCF-definable, there is no deterministic
“interogation tree" of oracle calls we can make to f in order
to compute F (f ).

I Thus, the naíve belief that computable functionals at level
2 can be computed via a deterministic sequence of oracle
calls is misleading when the types are not pure.

I We will return to the failure of some folklore results based
on this false intuition tomorrow.
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