
The Semantics of Higher Order Algorithms
Lecture I

May 27 - 2013

Dag Normann
The University of Oslo

Department of Mathematics

Nordic Spring School in Logic 2013 - 1



Introduction

I By an higher order algorithm we will mean any algorithm
where the input data may themselves be functions,
functionals or any other kind of infinite entity.

I When this is made more concrete with e. g. the use of a
programming language, the operational semantics of this
language will induce some kind of algebra on the typed set
of programs, but there may be numerous choices for a
good denotational semantics for the language in question.

Nordic Spring School in Logic 2013 - 2



Introduction

I There may even be ways to interpret an algorithm that are
partly operational and partly denotational.

I In these lectures we will consider approaches to such
models, both explicit examples and more abstract classes
of models.

Nordic Spring School in Logic 2013 - 3



Introduction

I Today we will survey the history of our subject, introducing
the Scott model and the path that led to it.

I We will let Plotkin’s PCF be our key example of a
concretization of higher order algorithms.

I On Thursday we will consider more abstract approaches to
higher order models, letting Kleene’s first model and the
finitary sequential procedures be our two key examples.

I On Friday we will present the sequential procedures and
the sequential functionals as our favorite model, and show
in what sense domain theory is inadequate for modeling
higher order deterministic algorithms.

Nordic Spring School in Logic 2013 - 4



Introduction

I These lectures are to some extent based on the
forthcoming

Higher Order Computability
by John Longley and Dag Normann, to appear in the CiE
Book Series on Computability, published by Springer
Verlag.

Nordic Spring School in Logic 2013 - 5



Prerequisites

We will not assume any deep knowledge of computability
theory, domain theory, topology etc., but it will certainly be an
advantage to be familiar with:

1. Basic set theory as given in a course on discrete
mathematics.

2. Basic knowledge of formal languages, with distinction
between free and bounded variables.

3. The basic definition of the computable functions, e. g. as
defined via Turing Machines.
The universal Turing Machine.

4. Basic intuition about algorithms and the operational
semantics.

Nordic Spring School in Logic 2013 - 6



DO NOT HESITATE TO ASK QUESTIONS.

Nordic Spring School in Logic 2013 - 7



A brief historical introduction - λ-calculus

I The historical origin of a subject in science is normally
vague, but we have to start somewhere.

I It is tedious to be historically correct, so we will look at the
history using, to some extent, today’s terminology.

I We choose to start with the λ-calculus in a modernized
version.

Nordic Spring School in Logic 2013 - 8



A brief historical introduction - λ-calculus

I λ-calculus is given as a term language with variables and
rewriting (conversion) rules.

I The underlying intuition is that all objects are functions,
and the terms will be generated from the variables using
two constructors:

I If M and N are terms, then (MN) is a term, thought of as M
operating on N.

I If M is a term and x is a variable then (λx .M) is a term,
thought of as denoting the function that to an interpretation
of x gives the associated interpretation of M.

I For instance, λx .x denotes the identity function in an
abstract sense.

Nordic Spring School in Logic 2013 - 9



A brief historical introduction - λ-calculus

I λ-abstraction is a binding of variables introducing the usual
distinction between free and bounded variables, and then
also defining what we mean by a substitutable term.

I The α-rule allows shifts of bounded variables

λx .M → λy .Mx
y .

I The β-rule links the two syntactic constructors:

(λx .M)N → Mx
N .

I In both cases we assume that the substitution is legal.
I We let→∗ be the reflexive and transitive closure of→.

Nordic Spring School in Logic 2013 - 10



A brief historical introduction - λ-calculus

I The Church numerals are defined by

n̂ = λx .λy .xn(y)

where we drop unnecessary parentheses.
I A closed term N defines a partial function f : N ↪→ N if for

all n and m, the following are equivalent:
1. f (n) is defined and is equal to m.
2. Nn̂→∗ m̂.

I It is a fact that a partial function f is λ-definable if and only
if it is computable by a Turing Machine.

Nordic Spring School in Logic 2013 - 11



A brief historical introduction - λ-calculus

I Turing’s model was immediately accepted as conceptually
sounder than λ-calculus as a foundation of computability
and decidability.

I The calculus was nevertheless favoured by computer
scientists in the 50’ies and 60’ies as a semantical tool in
the theory of programs.

Nordic Spring School in Logic 2013 - 12



A brief historical introduction - λ-calculus

I Mathematicians were more skeptical, due to the fact that
λ-calculus is pure syntax - there are apparently no natural
mathematical models.

I Mathematicians preferred to study models of computability
relevant for mathematical structures while computer
scientists preferred to study mathematical structures
illuminating calculi of computations.

I This led to different approaches, of which we can harvest
the best from both.

Nordic Spring School in Logic 2013 - 13



A brief historical introduction - Combinators

I There is an alternative approach to λ-calculus using
combinators.

I The set of combinator terms are generated from the
constants K and S by the rule

M,N 7→ (MN)

Nordic Spring School in Logic 2013 - 14



Introduction

I In order to improve readability, we drop parentheses
according to certain conventions, e. g. MNL actually
means ((MN)L).

I Then the conversion rules of the combinators are:
1. KMN → M
2. SMNL→ (ML)(NL)

The combinators have exactly the same expressive power
as the closed λ-terms.

Nordic Spring School in Logic 2013 - 15



A brief historical introduction - Kleene

I λ-calculus is at the same time first order and higher order,
all objects may represent both arguments and algorithms.

I In 1959, Kleene introduced higher order algorithms for
typed functionals.

Nordic Spring School in Logic 2013 - 16



Introduction

I He let Tp(0) = N and Tp(k + 1) consist of all set-theoretic
functions from Tp(n) to N. Via nine schemes, S1 - S9, he
defined a relation

{e}(Φ1, . . . ,Φn) ' a

meaning that algorithm number e with functional inputs
Φ1, . . . ,Φn terminates with output a ∈ N.

I We will not go into detail, since the main applications were
to definability theory rather than to computability theory.

Nordic Spring School in Logic 2013 - 17



A brief historical introduction - Kleene and Kreisel

I In 1959 Kleene and Kreisel independently introduced
another typed structure of functionals.

I Kleene called these functionals countable since we need a
countable amount of information to fully describe each of
them.

I Kreisel called them continuous because of his
construction via formal neighborhoods.

Nordic Spring School in Logic 2013 - 18



A brief historical introduction - Kleene and Kreisel

I Their constructions were not equivalent, but were soon
considered to be alternative constructions of what we now
call the Kleene-Kreisel continuous functionals

I Kleene’s S1-S9 make sense also for the typed structure of
KK-continuous functionals.

I What is significant to us is that there is an alternative way
to define what we may mean with a computable continuous
functional, as codable by a computable function.

I Some mathematical effort were put into the analysis of the
relation between the two definitions of being computable.

Nordic Spring School in Logic 2013 - 19



A brief historical introduction - Platek

I The main problem with Kleene’s approach was that it only
dealt with total functionals at all types.

I This somehow bars the use of partial functions at
intermediate steps in a computation.

Nordic Spring School in Logic 2013 - 20



A brief historical introduction - Platek

I In 1963 Platek, in his thesis, gave an alternative
construction of

1. Functionals of finite types
2. Computable functionals

I It is time to be a bit more precise than what we have been
up to now.

I For the sake of simplicity, we continue to sacrifice historical
correctness.

Nordic Spring School in Logic 2013 - 21



Typed structures

We have now seen enough examples to justify the following
definition:

Definition
a) The finite types is the language generated by the following

grammar
Type σ
σ ::= Nat | (σ → σ)

b) We simplify the notation by dropping the outmost brackets
and rewriting σ → (τ → δ) to σ, τ → δ.

Nordic Spring School in Logic 2013 - 22



Typed structures

Any type can be written on the normal form

σ = τ1, . . . , τn → Nat

where n ≥ 0.

Nordic Spring School in Logic 2013 - 23



Typed structures

Definition
An extensional typed structure is a map σ 7→ T (σ), where T (σ)
is a set for each type σ, such that

T (Nat) ⊆ N ∪ {⊥}
T (σ) is a set of functions defined on T (τ), and with values
in T (δ), when σ = (τ → δ).

Nordic Spring School in Logic 2013 - 24



Typed structures

I A typed structure is total if ⊥ 6∈ T (Nat), otherwise it is
partial.

I Sometimes one will be primarily interested in a total typed
structure, but will need a partial counterpart in order to
interpret algorithms.

Nordic Spring School in Logic 2013 - 25



A brief historical introduction - Platek

Definition
We define Platek’s functionals (hereditarily consistent partial
functionals) as a pair (P(σ),vσ) for each type σ as follows:

I P(Nat) = N ∪ {⊥} with

a vNat b ⇔ a = b ∨ a = ⊥ .

I P(σ) is the set of monotonously increasing functions from
P(τ) to P(δ) when σ = (τ → δ).

I P(σ) is then ordered by the pointwise ordering.

Nordic Spring School in Logic 2013 - 26



A brief historical introduction - Platek

Platek’s calculus is based on constants for basic arithmetical
functions together with typed combinators:

1. Kσ,δ of type σ, δ → σ.
2. Sσ,δ,τ of type (σ → (δ → τ)), (σ → δ), σ → τ .
3. Yσ of type (σ → σ)→ σ.

where we have
I Application terms must be correctly typed.
I Conversion rules for K and S with indices are as before.
I The conversion rule for Yσ is YσN → N(YσN).

Nordic Spring School in Logic 2013 - 27



A brief historical introduction - Platek

I Every functional Φ in P(σ → σ) will have a least fixed point
Fix(Φ) in P(σ) and the map Φ 7→ Fix(Φ) is an element of
P((σ → σ)→ σ)

I If we let [[Yσ]] be this map, we have an interpretation [[M]]
of each correctly typed term in Platek’s calculus, such that

M →∗ N ⇒ [[M]] = [[N]] .

I This defines the Platek-computable functionals directly
using the denotational semantics, without any explicit
operational semantics. This was the style of
mathematicians in 1963.

Nordic Spring School in Logic 2013 - 28



Platek’s Thesis

Platek’s thesis is hard to get at, but a readable account can be
found in

Johan Moldestad
Computations in Higher Types
Lecture Notes in Mathematics 574
Springer Verlag 1977

Nordic Spring School in Logic 2013 - 29



A brief historical introduction - Scott

I In 1969 Dana Scott combined the ideas of Kleene/Kreisel
and Platek - added a few of his own - and made our
subject a part of Computer Science.

I He formed the language/logic LCF with a new kind of
semantics consisting of

1. A term language very much like the one suggested by
Platek.

2. A full language containing relation symbols for vσ and =σ.
3. A formal logic.

Nordic Spring School in Logic 2013 - 30



A brief historical introduction - Scott

I Adding a further restriction of continuity to Platek’s
construction, he defined the hereditarily partial and
continuous functionals of finite types, and gave an
interpretation of each term sound with respect to the
calculus and logic.

Nordic Spring School in Logic 2013 - 31



A brief historical introduction - Scott

I Scott’s motivation was to replace the untyped λ-calculus
with a typed variant with a sound semantics, claiming that
in essence, all data are typed.

I Within months, however, he discovered that he had the
tools needed for constructing a mathematical model for the
original λ-calculus.

Nordic Spring School in Logic 2013 - 32



A brief historical introduction - Scott

I This led to the use of topology, via domains and complete
lattices, for semantical purposes in the analysis of
programs and algorithms.

I One question we will ask ourselves is if Scott’s domain
theory is the best tool for giving an interpretation of the
calculus LCF.

Nordic Spring School in Logic 2013 - 33



A brief historical introduction - Plotkin

I In a seminal paper from 1977 Plotkin linked this
development of the understanding of higher order
computability even closer to the theory of programming.

I By going back to traditional typed λ-calculus, he
reformulated LCF to PCF.

Nordic Spring School in Logic 2013 - 34



A brief historical introduction - Plotkin

I He devised a deterministic, or sequential, evaluation
strategy for PCF-terms of base types.

I The strategy will give a terminating evaluation of all closed
terms that are interpreted as an integer in Scott’s model.

I PCF is a standalone programming language for higher
order algorithms, and has inspired e. g. languages like
Haskell.

Nordic Spring School in Logic 2013 - 35



PCF - The calculus

I Our prototype for higher order algorithms will be those
dealing with functionals of finite types, and expressible in a
reduced version of PCF.

I We may extend our universe of types with a type for the
booleans and close under products ×, disjoint unions ⊕,
lists, trees etc.

I We may even introduce types using strictly positive
induction or W -kinds of types, and preserve much of our
analysis.

Nordic Spring School in Logic 2013 - 36



PCF - The calculus

I We will not do any of this here, in order to be able to focus
on distinctions like continuity vs. sequentiality, effectivity
vs. completeness and partiality vs. totality.

I We will later see a construction, the Karoubi envelope, that
will enable us to view a lot of extra datatypes as
represented in a simple typed structure.

Nordic Spring School in Logic 2013 - 37



PCF - The calculus

I Our language will be the language of typed λ-calculus with
the following constants:

1. A constant 0 of type Nat.
2. A constant Suc of type Nat→ Nat.
3. A constant Pre of type Nat→ Nat.
4. A constant ⊃ of type Nat,Nat,Nat→ Nat.
5. Constants Yσ of type (σ → σ)→ σ.

I We close under application and λ-abstraction as before.

Nordic Spring School in Logic 2013 - 38



PCF - The calculus

I Our conversion rules will be the α- and β-rules of typed
λ-calculus together with:

1. Pre(Suc x)→ x .
2. ⊃ 0NM → N.
3. ⊃ k + 1NM → M.
4. YσN → N(YσN).

I where we define the PCF-numerals by the recursion
k + 1 = Suc(k).

I A partial function f of type Nat→ Nat is PCF-computable if
there is a closed term Mf such that f (n) = m if and only if
Mf n→∗ m.

I It may come as a surprise that all Turing-computable
functions are PCF-computable.

Nordic Spring School in Logic 2013 - 39



PCF - The calculus

In a term, we may give the type of a variable as an index of the
first occurrence, but never at later occurrences.

Example
Consider the term

λxNat.λyNat.(YNatλfNat→Nat.λzNat ⊃ zySuc(f (Pre z)))x .

This shows that x , y 7→ x + y is PCF-computable.
Any other function defined by primitive recursion is definable by
the same method.

Nordic Spring School in Logic 2013 - 40



PCF - The calculus

I Minimization, or the µ-operator, is a functional of type
(Nat→ Nat)→ Nat defined by

I µ(f ) = n if
I f (n) = 0.
I f (m) is defined and f (m) > 0 for all m < n.

I Minimization is PCF-definable. Let us look at the next slide:

Nordic Spring School in Logic 2013 - 41



Minimization in PCF

We define minimization informally by the equation

µ(f ) =

{
0 if f (0) = 0

µ(λx .f (x + 1)) + 1 if f (0) > 0

If F is a variable of type (Nat→ Nat)→ Nat and f is a variable
of type Nat→ Nat we consider the term

λF .λf . ⊃ (f0)0Suc(FλxNat.f (Suc x)) .

We then need Y(Nat→Nat)→Nat in front of this to give a PCF-term
for minimization.

Nordic Spring School in Logic 2013 - 42



The Scott interpretation

I The Scott model is a natural completion of the finitary
versions of the Platek model.

I By recursion on the type σ, we define the finite partial
ordering (Dn(σ),vσ,n) as follows:

I Dn(Nat) = {⊥,0, . . . ,n}
I a vNat,n b ⇔ a = ⊥ ∨ a = b for a,b ∈ Dn(Nat).
I Dn(σ → τ) is the set of monotonously increasing functions

from Dn(σ) to Dn(τ).
I vσ→τ,n is the pointwise ordering.

Nordic Spring School in Logic 2013 - 43



The Scott interpretation

I These typed structures can be linked via a system of
embedding-projection pairs:

I If n ≤ m and σ is a type, we define the embedding
εσn,m : Dn(σ)→ Dm(σ) and the projection
πσn,m : Dm(σ)→ Dn(σ) by recursion on σ as follows:

I εNat
n,m(a) = a

I πNat
n,m(a) = a when a ∈ Dn(Nat) and ⊥ otherwise.

I If σ = τ → δ, f ∈ Dn(σ) and y ∈ Dm(τ) we let

εσn,m(f )(y) = εδn,m(f (πτn,m(y))) .

I If σ = τ → δ, g ∈ Dm(σ) and x ∈ Dn(τ) we let

πσn,m(g)(n) = πδn,m(f (ετn,m(y))) .

Nordic Spring School in Logic 2013 - 44



The Scott interpretation

I The crucial property, easily proved by induction on the
type, is

1. πσn,m ◦ εσn,m is the identity function idn,σ on Dn(σ).
2. εσn,m ◦ πσn,m v idm,σ.

I This shows that we have defined a chain of typed
structures, and this chain will have a limit.

I This limit is known as the Scott model, see the next slide:

Nordic Spring School in Logic 2013 - 45



The Scott interpretation

I For each type σ and n < m, we may consider Dn(σ) as a
subset of Dm(σ) identifying x ∈ Dn(σ) with
εσn,m(x) ∈ Dm(σ).

I If we let Dω =
⋃

n∈N Dn(σ) for each type σ, we have
produced a typed structure of finitary partial functionals.

I Since the ε-functions preserve v (exercise), we inherit the
ordering v in Dω(σ).

I This typed structure is the backbone of Scott’s model,
which may be viewed as the completion, much like going
from Q to R.

Nordic Spring School in Logic 2013 - 46



The Scott interpretation

I We do not intend to introduce domain theory in full in this
course, just enough to enable us to define the Scott model.

I An ideal in Dω(σ) will be a set of the form

{y ∈ Dω(σ) | ∃n y v xn}

where {xn}n∈N is an increasing sequence from Dω(σ).
I The Scott-interpretation D(σ) of the type σ will be the set of

ideals, ordered by inclusion.

Nordic Spring School in Logic 2013 - 47



The Scott interpretation

I We consider Dω(σ) as a subset of D(σ) by identifying
x ∈ Dω(σ) with the ideal generated from the constant x
sequence.

I We define application on the typed sets of ideals via
pointwise application of generating sequences.

I An ideal is computable by definition if it is generated from a
computable sequence. This corresponds to being c. e. .

Nordic Spring School in Logic 2013 - 48



The Scott interpretation

I It is easy to prove
a) If σ = τ → δ, then every element in D(σ) commutes with

least upper bounds of directed sets.
b) There is an ideal representing the least fixed point operator

on each D(σ → σ).
I We can use this to interpret every PCF-term N of type σ

with free variables among xτ1 , . . . , xτn as an element [[N]]
in D(τ1, . . . , τn → σ).

I This is, slightly modified, the classical approach. The
approach links computability and continuity in a strong
sense.

Nordic Spring School in Logic 2013 - 49



The Scott interpretation

I On Friday, we will question if this link is as natural as
originally believed, or if we should look for alternatives to
continuity as abstractions of computability.

I Scott’s model does not capture that there are underlying
evaluations of functions on inputs.

Nordic Spring School in Logic 2013 - 50



Plotkin’s adequacy Theorem

I Plotkin’s sequential strategy for evaluating closed
PCF-terms of type Nat is simple:

I Apply one of the conversion rules at the leftmost position
possible.

I Then a closed term N of type Nat rewrites to a numeral n if
and only if [[N]] = n.

I The proof borrows ideas from the normalization theorem
for simply typed λ-calculus.

I We say that he model is adequate for the calculus.

Nordic Spring School in Logic 2013 - 51



Non-determinism in the model

I One problem with the model, already known to Platek, is
that it models more than the PCF-definable functions, even
at the finite level.

I Let f (n,m) = 0 if n = 0 or m = 0, f (1,1) = 1 and
f (n,m) = ⊥ in all other cases.

I f ∈ DNat,Nat→Nat,k for k ≥ 1, but here will be no closed
PCF-term N such that f v [[N]].

I f is non-deterministic, and cannot be evaluated by a
sequential procedure.

Nordic Spring School in Logic 2013 - 52



Summarizing

I Today we have been looking at the historical development
of higher order computability.

I On Thursday we will consider extensional and intensional
typed structures at a more general level, including what we
call the sequential functionals.

I On Friday we will mainly discuss properties of these
sequential functionals, and to some extent, challenges
related to models for higher order algorithms.

Nordic Spring School in Logic 2013 - 53


