Rewards of Ordinal Analyses

• I. Hilbert’s Programme Extended: Constructive Consistency Proofs
Rewards of Ordinal Analyses

- I. Hilbert’s Programme Extended: Constructive Consistency Proofs
- II. Equiconsistency, Conservativity and Independence Results
Rewards of Ordinal Analyses

- I. Hilbert’s Programme Extended: Constructive Consistency Proofs
- II. Equiconsistency, Conservativity and Independence Results
- III. Classification of Provable Functions and Functionals of Theories
Rewards of Ordinal Analyses

• I. Hilbert’s Programme Extended: Constructive Consistency Proofs
• II. Equiconsistency, Conservativity and Independence Results
• III. Classification of Provable Functions and Functionals of Theories
• IV. Combinatorial Independence Results
• I. (R; Setzer) Consistency proof of \((\Sigma^1_2-\text{AC}) + \text{BI}\) in Martin-Löf Type Theory.
A finite tree is a finite partially ordered set

\[\mathcal{B} = (B, \leq) \]

such that:

(i) \(B \) has a smallest element (called the root of \(\mathcal{B} \));

(ii) for each \(s \in B \) the set \(\{ t \in B : t \leq s \} \) is a totally ordered subset of \(B \).
A finite tree is a finite partially ordered set

\[B = (B, \leq) \]

such that:

(i) \(B \) has a smallest element (called the root of \(B \));
(ii) for each \(s \in B \) the set \(\{t \in B : t \leq s\} \) is a totally ordered subset of \(B \).

For finite trees \(B_1 \) and \(B_2 \), an embedding of \(B_1 \) into \(B_2 \) is a one-to-one mapping

\[f : B_1 \rightarrow B_2 \]

such that

\[f(a \land b) = f(a) \land f(b) \]

for all \(a, b \in B_1 \), where \(a \land b \) denotes the infimum of \(a \) and \(b \).
• **Kruskal’s Theorem.** For every infinite sequence of trees \((B_k : k < \omega) \), there exist \(i \) and \(j \) such that \(i < j < \omega \) and \(B_i \) is embeddable into \(B_j \).

(In particular, there is no infinite set of pairwise nonembeddable trees.)
• **Kruskal’s Theorem.** For every infinite sequence of trees \((B_k : k < \omega)\), there exist \(i\) and \(j\) such that \(i < j < \omega\) and \(B_i\) is embeddable into \(B_j\).
(In particular, there is no infinite set of pairwise nonembeddable trees.)

• **Theorem** (H. Friedman, D. Schmidt) Kruskal’s Theorem is not provable in \(\text{ATR}_0\).
• **Kruskal’s Theorem.** For every infinite sequence of trees \((B_k : k < \omega)\), there exist \(i\) and \(j\) such that \(i < j < \omega\) and \(B_i\) is embeddable into \(B_j\).

(In particular, there is no infinite set of pairwise nonembeddable trees.)

• **Theorem** (H. Friedman, D. Schmidt) Kruskal’s Theorem is not provable in \(\text{ATR}_0\).

• The proof utilizes that Kruskal’s Theorem implies that \(\Gamma_0\) is well-founded.
The Extended Kruskal Theorem

For $n < \omega$, let \mathcal{B}_n be the set of all finite trees with labels from n, i.e. $(\mathcal{B}, \ell) \in \mathcal{B}_n$ if \mathcal{B} is a finite tree and

$$\ell : B \rightarrow \{0, \ldots, n - 1\}.$$

The set \mathcal{B}_n is quasiordered by putting $(\mathcal{B}_1, \ell_1) \leq (\mathcal{B}_2, \ell_2)$ if there exists an embedding

$$f : \mathcal{B}_1 \rightarrow \mathcal{B}_2$$

such that:

- $\ell_1(b) = \ell_2(f(b))$ for each $b \in \mathcal{B}_1$;
- if b is an immediate successor of $a \in \mathcal{B}_1$, then for each $c \in \mathcal{B}_2$ in the interval $f(a) < c < f(b)$, $\ell_2(c) \geq \ell_2(f(b))$.

This condition is called a gap condition.
The Extended Kruskal Theorem

- For $n < \omega$, let B_n be the set of all finite trees with labels from n, i.e. $(B, \ell) \in B_n$ if B is a finite tree and

$$\ell : B \to \{0, \ldots, n - 1\}.$$

The set B_n is quasiordered by putting $(B_1, \ell_1) \leq (B_2, \ell_2)$ if there exists an embedding

$$f : B_1 \to B_2$$ such that:

- $\ell_1(b) = \ell_2(f(b))$ for each $b \in B_1$;
The Extended Kruskal Theorem

For $n < \omega$, let \mathcal{B}_n be the set of all finite trees with labels from n, i.e. $(\mathcal{B}, \ell) \in \mathcal{B}_n$ if \mathcal{B} is a finite tree and

$$\ell : B \to \{0, \ldots, n-1\}.$$

The set \mathcal{B}_n is quasiordered by putting $(\mathcal{B}_1, \ell_1) \leq (\mathcal{B}_2, \ell_2)$ if there exists an embedding

$$f : \mathcal{B}_1 \to \mathcal{B}_2$$

such that:

- $\ell_1(b) = \ell_2(f(b))$ for each $b \in B_1$;
- if b is an immediate successor of $a \in B_1$, then for each $c \in B_2$ in the interval $f(a) < c < f(b)$,

$$\ell_2(c) \geq \ell_2(f(b)).$$

This condition is called a gap condition.
The Extended Kruskal Theorem

Theorem. (Friedman) For each $n < \omega$, \mathcal{B}_n is a well quasi ordering (abbreviated $\text{WQO}(\mathcal{B}_n)$), i.e. there is no infinite set of pairwise nonembeddable trees.
The Extended Kruskal Theorem

Theorem. (Friedman) For each $n < \omega$, B_n is a well quasi ordering (abbreviated $WQO(B_n)$), i.e. there is no infinite set of pairwise nonembeddable trees.

Theorem $\forall n < \omega \ WQO(B_n)$ is not provable in $\Pi^1_1 - \text{CA}_0$.
The Extended Kruskal Theorem

Theorem. (Friedman) For each $n < \omega$, \mathcal{B}_n is a well quasi ordering (abbreviated $\text{WQO}(\mathcal{B}_n)$), i.e. there is no infinite set of pairwise nonembeddable trees.

Theorem $\forall n < \omega \ WQO(\mathcal{B}_n)$ is not provable in $\Pi^1_1 – \text{CA}_0$.

- The proof employs an ordinal representation system for the proof-theoretic ordinal of $\Pi^1_1 – \text{CA}_0$. The ordinal is $\psi_0(\Omega_\omega)$.

From arithmetic to set theory
The Graph Minor Theorem

- G, H graphs. If H is obtained from G by first deleting some vertices and edges, and then contracting some further edges, H is a minor of G.
The Graph Minor Theorem

- G, H graphs. If H is obtained from G by first deleting some vertices and edges, and then contracting some further edges, H is a minor of G.

GMT Theorem. (Robertson and Seymour 1986-1997) If G_0, G_1, G_2, \ldots is an infinite sequence of finite graphs, then there exist $i < j$ so that G_i is isomorphic to a minor of G_j.

Rom Arithmetic to Set Theory
The Graph Minor Theorem

- G, H graphs. If H is obtained from G by first deleting some vertices and edges, and then contracting some further edges, H is a minor of G.

GMT Theorem. (Robertson and Seymour 1986-1997) If G_0, G_1, G_2, \ldots is an infinite sequence of finite graphs, then there exist $i < j$ so that G_i is isomorphic to a minor of G_j.

- The proof of GMT uses the EKT.

Corollary. (Vázsonyi's conjecture) If all the G_k are trivalent, then there exist $i < j$ so that G_i is embeddable into G_j.

Corollary. (Wagner's conjecture) For any 2-manifold M there are only finitely many graphs which are not embeddable in M and are minimal with this property.
The Graph Minor Theorem

- G, H graphs. If H is obtained from G by first deleting some vertices and edges, and then contracting some further edges, H is a minor of G.

GMT Theorem. (Robertson and Seymour 1986-1997) If G_0, G_1, G_2, \ldots is an infinite sequence of finite graphs, then there exist $i < j$ so that G_i is isomorphic to a minor of G_j.

- The proof of GMT uses the EKT.

- Corollary. (Vázsonyi’s conjecture) If all the G_k are trivalent, then there exist $i < j$ so that G_i is embeddable into G_j.
The Graph Minor Theorem

- G, H graphs. If H is obtained from G by first deleting some vertices and edges, and then contracting some further edges, H is a **minor** of G.

GMT Theorem. (Robertson and Seymour 1986-1997) If G_0, G_1, G_2, \ldots is an infinite sequence of finite graphs, then there exist $i < j$ so that G_i is isomorphic to a minor of G_j.

- The proof of GMT uses the EKT.

- **Corollary.** (Vázsonyi’s conjecture) If all the G_k are trivalent, then there exist $i < j$ so that G_i is embeddable into G_j.

- **Corollary.** (Wagner’s conjecture) For any 2-manifold M there are only finitely many graphs which are not embeddable in M and are minimal with this property.
• **Theorem.** (Friedman, Robertson, Seymour)
The Graph Minor Theorem

- **Theorem.** (Friedman, Robertson, Seymour)
 - GMT implies EKT within, say, RCA$_0$.

From arithmetic to set theory
The Graph Minor Theorem

- **Theorem.** (Friedman, Robertson, Seymour)

 - **GMT** implies **EKT** within, say, **RCA** 0.

 - **GMT** is not provable in **Π** 1 – **CA** 0.
Ockham’s Razor
In what follows, we shall be solely dealing with classical logic. Therefore we can simplify the sequent calculus as follows:

- We get rid of the **structural rules** by using **sets of formulae** rather than **sequents of formulae**. This has the effect that **exchange** and **contraction** happen automatically:

\[
\{ C_1, \ldots, C_r, A, A, D_1, \ldots, D_s \} = \{ D_1, \ldots, D_s, A, C_1, \ldots, C_r \}
\]

We take care of **weakening** by adding all the formulae we may be interested in from the start; thus we have more liberal axioms:

\[A, \Gamma \Rightarrow \Delta, A \]
Using the **De Morgan laws** of classical logic we can push **negations** in front of **atomic** formulae. Also, in classical logic \neg, \land, \lor forms a **complete** set of connectives. Thus we can simplify matters, by demanding that formulae are built up from atomic and **negated atomic formulae** (literals) by means of $\land, \lor, \forall, \exists$.

Negating a formula A then becomes a defined operation:

- $\neg\neg A := A$ if A is atomic;
- $\neg(A \land B) = \neg A \lor \neg B$; $\neg(A \lor B) = \neg A \land \neg B$;
- $\neg\forall x F(x) := \exists x \neg F(x)$; $\neg\exists x F(x) := \forall x \neg F(x)$.

In classical logic we don’t need the two sides of a sequent

$$A_1, \ldots, A_r \Rightarrow \Delta$$

since it can be re-written as

$$\Rightarrow \neg A_1, \ldots, \neg A_r, \Delta$$
In the Tait-style version of the **classical sequent calculus** \(\Gamma, \Delta, \Lambda, \Theta, \ldots \) range over finite sets of formulae in **negation normal form**. \(\Gamma, \Delta \) stands for \(\Gamma \cup \Delta \) and \(\Delta, A \) is short for \(\Delta \cup \{A\} \).
The **inferences** of the **Tait-calculus** are as follows:

(Axiom) $\Gamma, A, \neg A$

(\land) \[
\begin{array}{c}
\Gamma, A \\
\Gamma, A' \\
\end{array} \rightarrow
\begin{array}{c}
\Gamma, A \land A' \\
\end{array}
\]

(\lor) \[
\begin{array}{c}
\Gamma, A_i \\
\end{array} \rightarrow
\begin{array}{c}
\Gamma, A_0 \lor A_1 \\
\end{array} \text{ if } i = 0 \text{ or } i = 1
\]

(\forall) \[
\begin{array}{c}
\Gamma, F(a) \\
\end{array} \rightarrow
\begin{array}{c}
\Gamma, \forall x F(x) \\
\end{array}
\]

(\exists) \[
\begin{array}{c}
\Gamma, F(t) \\
\end{array} \rightarrow
\begin{array}{c}
\Gamma, \exists x F(x) \\
\end{array}
\]

(Cut) \[
\begin{array}{c}
\Gamma, A \\
\Gamma, \neg A \\
\end{array} \rightarrow
\begin{array}{c}
\Gamma \\
\end{array}
\]

Of course, the variable a in (\forall) is an eigenvariable.
Part II: Predicative Proof Theory
These are theories for Gödel's notion of constructibility restricted to sets of natural numbers. Use ordinal indexed variables X_α, Y_α, Z_α, ...

1. Level 0 variables range over sets definable by numerical quantification.
2. Level $\alpha > 0$ variables range over sets definable by numerical quantification and level $< \alpha$ quantification.

Theorem: (Schütte) The proof-theoretic ordinal of RA_α is φ_α^0.

FROM ARITHMETIC TO SET THEORY
Ramified Analysis RA_α

- These are theories for Gödel’s notion of *constructibility* restricted to sets of natural numbers.
Ramified Analysis RA_α

- These are theories for Gödel’s notion of *constructibility* restricted to sets of natural numbers.
- Use ordinal indexed variables X^α, Y^α, Z^α, ...
Ramified Analysis RA_α

- These are theories for Gödel’s notion of *constructibility* restricted to sets of natural numbers.
- Use ordinal indexed variables $X^\alpha, Y^\alpha, Z^\alpha, \ldots$.
 - Level 0 variables range over sets definable by numerical quantification.

Theorem: (Schütte) The proof-theoretic ordinal of RA_α is φ_α^0.
Ramified Analysis RA_α

- These are theories for Gödel’s notion of constructibility restricted to sets of natural numbers.
- Use ordinal indexed variables $X^\alpha, Y^\alpha, Z^\alpha, \ldots$.
 1. Level 0 variables range over sets definable by numerical quantification.
 2. Level $\alpha > 0$ variables range over sets definable by numerical quantification and level $< \alpha$ quantification.
Ramified Analysis RA_α

- These are theories for Gödel’s notion of constructibility restricted to sets of natural numbers.
- Use ordinal indexed variables $X^\alpha, Y^\alpha, Z^\alpha, \ldots$.
 1. Level 0 variables range over sets definable by numerical quantification.
 2. Level $\alpha > 0$ variables range over sets definable by numerical quantification and level $< \alpha$ quantification.

Theorem: (Schütte)

The proof-theoretic ordinal of RA_α is $\varphi_\alpha 0$.

FROM ARITHMETIC TO SET THEORY
Infinite Ramified Analysis RA^∞

- Uses ordinal indexed free set variables $U_\alpha, V_\alpha, W_\alpha, \ldots$
 and bound set variables $X_\beta, Y_\beta, Z_\beta, \ldots$ with $\beta > 0$.

1. Every free set variable U_α is a set term of level α.

2. If P is a set term of level α and t is a numerical term, then $t \in P$ and $t/ \in P$ are formulas of level α.

3. If A and B are formulas of levels α and β, then $A \lor B$ and $A \land B$ are formulas of level $\max(\alpha, \beta)$.

4. If $F(U_\beta)$ is a formula of level α and $\beta > 0$, then $\forall X_\beta F(X_\beta)$ is a formula of level $\max(\alpha, \beta)$.

5. If $F(U_\beta)$ is a formula of level α and $\beta > 0$, then $\forall X_\beta F(X_\beta)$ is a formula of level $\max(\alpha, \beta)$.

FROM ARITHMETIC TO SET THEORY
Infinite Ramified Analysis RA^∞

Uses ordinal indexed free set variables U^α, V^α, W^α, \ldots and and bound set variables X^β, Y^β, Z^β, \ldots with $\beta > 0$.
Infinite Ramified Analysis RA^∞

Uses ordinal indexed free set variables $U^\alpha, V^\alpha, W^\alpha, \ldots$ and bound set variables $X^\beta, Y^\beta, Z^\beta, \ldots$ with $\beta > 0$.

1. Every free set variable U^α is a **set term** of level α.

FROM ARITHMETIC TO SET THEORY
Infinite Ramified Analysis RA\(^\infty\)

Uses ordinal indexed free set variables \(U^\alpha, V^\alpha, W^\alpha, \ldots\) and bound set variables \(X^\beta, Y^\beta, Z^\beta, \ldots\) with \(\beta > 0\).

1. Every free set variable \(U^\alpha\) is a set term of level \(\alpha\).
2. If \(P\) is a set term of level \(\alpha\) and \(t\) is a numerical term, then \(t \in P\) and \(t \notin P\) are formulas of level \(\alpha\).
Uses ordinal indexed free set variables $U^\alpha, V^\alpha, W^\alpha, \ldots$ and and bound set variables $X^\beta, Y^\beta, Z^\beta, \ldots$ with $\beta > 0$.

1. Every free set variable U^α is a set term of level α.
2. If P is a set term of level α and t is a numerical term, then $t \in P$ and $t \notin P$ are formulas of level α.
3. If A and B are formulas of levels α and β, then $A \lor B$ and $A \land B$ are formulas of level $\max(\alpha, \beta)$.
Infinite Ramified Analysis RA∞

Uses ordinal indexed free set variables $U^\alpha, V^\alpha, W^\alpha, \ldots$ and bound set variables $X^\beta, Y^\beta, Z^\beta, \ldots$ with $\beta > 0$.

1. Every free set variable U^α is a set term of level α.
2. If P is a set term of level α and t is a numerical term, then $t \in P$ and $t \notin P$ are formulas of level α.
3. If A and B are formulas of levels α and β, then $A \lor B$ and $A \land B$ are formulas of level $\max(\alpha, \beta)$.
4. If $F(0)$ is a formula of level α, then $\forall x F(x)$ and $\exists x F(x)$ are formulas of level α and $\{x \mid F(x)\}$ is a set term of level α.
Infinite Ramified Analysis RA^∞

Uses ordinal indexed free set variables $U^\alpha, V^\alpha, W^\alpha, \ldots$ and and bound set variables $X^\beta, Y^\beta, Z^\beta, \ldots$ with $\beta > 0$.

1. Every free set variable U^α is a set term of level α.
2. If P is a set term of level α and t is a numerical term, then $t \in P$ and $t \notin P$ are formulas of level α.
3. If A and B are formulas of levels α and β, then $A \lor B$ and $A \land B$ are formulas of level $\max(\alpha, \beta)$.
4. If $F(0)$ is a formula of level α, then $\forall x F(x)$ and $\exists x F(x)$ are formulas of level α and $\{x \mid F(x)\}$ is a set term of level α.
5. If $F(U^\beta)$ is a formula of level α and $\beta > 0$, then $\forall X^\beta F(X^\beta)$ is a formula of level $\max(\alpha, \beta)$.

From arithmetic to set theory
The calculus \mathbf{RA}^∞
The calculus \mathbf{RA}^∞

Axioms
Axioms
Γ, L where L is a true literal
The calculus RA^∞

Axioms

Γ, L where L is a true literal

$\Gamma, s \in U^\alpha, t \notin U^\alpha$ where $s^N = t^N$.

FROM ARITHMETIC TO SET THEORY
Axioms
\[\Gamma, L \text{ where } L \text{ is a true literal} \]
\[\Gamma, s \in U^\alpha, t \notin U^\alpha \text{ where } s^N = t^N. \]

Rules
The calculus RA^∞

Axioms
Γ, L where L is a true literal
$\Gamma, s \in U^\alpha$, $t \notin U^\alpha$ where $s^N = t^N$.

Rules
$(\land), (\lor), (\omega)$, numerical ($\exists$) and (Cut) as per usual
The calculus \mathbf{RA}^∞

Axioms
Γ, L where L is a true literal
$\Gamma, s \in U^\alpha, t \notin U^\alpha$ where $s^N = t^N$.

Rules
$(\land), (\lor), (\omega)$, numerical (\exists) and (Cut) as per usual
$(\exists^\alpha) \quad \frac{\Gamma, F(P)}{\Gamma, \exists X^\alpha F(X^\alpha)} \quad P$ set term of level $< \alpha$.

FROM ARITHMETIC TO SET THEORY
The calculus \(\text{RA}^\infty \)

Axioms

\(\Gamma, L \) where \(L \) is a true literal

\(\Gamma, s \in U^\alpha, t \notin U^\alpha \) where \(s^N = t^N \).

Rules

\((\land), (\lor), (\omega), \) numerical \((\exists)\) and \((\text{Cut})\) as per usual

\[
(\exists^\alpha) \quad \frac{\Gamma, F(P)}{\Gamma, \exists X^\alpha F(X^\alpha)} \quad \text{P set term of level } < \alpha.
\]

\[
(\forall^\alpha) \quad \frac{\ldots \Gamma, F(P) \ldots}{\Gamma, \forall X^\alpha F(X^\alpha)} \quad \text{for all } P \text{ of level } < \alpha
\]
The calculus \mathbf{RA}^∞

Axioms
\[\Gamma, L \text{ where } L \text{ is a true literal} \]
\[\Gamma, s \in U^\alpha, t \notin U^\alpha \text{ where } s^N = t^N. \]

Rules
\[(\wedge), (\vee), (\omega), \text{ numerical } (\exists) \text{ and } (\text{Cut}) \text{ as per usual} \]

\[(\exists^\alpha) \quad \frac{\Gamma, F(P)}{\Gamma, \exists X^\alpha F(X^\alpha)} \quad \text{P set term of level } < \alpha. \]

\[(\forall^\alpha) \quad \frac{... \Gamma, F(P) ... \text{ for all } P \text{ of level } < \alpha}{\Gamma, \forall X^\alpha F(X^\alpha)} \]

\[(ST_1) \quad \frac{\Gamma, F(t)}{\Gamma, t \in \{x \mid F(x)\}} \]
The calculus RA$^\infty$

Axioms

Γ, L where L is a true literal

$\Gamma, s \in U^\alpha, t \notin U^\alpha$ where $s^N = t^N$.

Rules

$(\land), (\lor), (\omega)$, numerical (\exists) and (Cut) as per usual

$(\exists^\alpha) \quad \frac{\Gamma, F(P)}{\Gamma, \exists X^\alpha F(X^\alpha)} \quad P$ set term of level $< \alpha$.

$(\forall^\alpha) \quad \frac{\ldots \Gamma, F(P) \ldots}{\Gamma, \forall X^\alpha F(X^\alpha)}$ for all P of level $< \alpha$

$(ST_1) \quad \frac{\Gamma, F(t)}{\Gamma, t \in \{x \mid F(x)\}}$

$(ST_2) \quad \frac{\Gamma, \neg F(t)}{\Gamma, t \notin \{x \mid F(x)\}}$

From arithmetic to set theory
Cut rank in RA^∞

The cut-rank of a formula A, $|A|$, is defined as follows:

1. $|L| = 0$ for arithmetical literals L.
2. $|t| = |t/\in U_\alpha| = \omega \cdot |t|$, $\in U_\alpha$.
3. $|B_0 \land B_1| = |B_0 \lor B_1| = \max(|B_0|, |B_1|) + 1$.
4. $|\forall x B(x)| = |\exists x B(x)| = |t|$, $t \in \{x | B(x)\}$, $t/\in \{x | B(x)\}$.
5. $|\forall X_\alpha A(X_\alpha)| = |\exists X_\alpha A(X_\alpha)| = \max(\omega \cdot \gamma, |A(U_0)| + 1)$.

where γ is the level of $\forall X_\alpha A(X_\alpha)$.
The **cut-rank** of a formula A, $|A|$, is defined as follows:
The **cut-rank** of a formula A, $|A|$, is defined as follows:

1. $|L| = 0$ for arithmetical literals L.
The cut-rank of a formula A, $|A|$, is defined as follows:

1. $|L| = 0$ for arithmetical literals L.
2. $|t \in U^\alpha| = |t \notin U^\alpha| = \omega \cdot \alpha$
The **cut-rank** of a formula A, $|A|$, is defined as follows:

1. $|L| = 0$ for arithmetical literals L.
2. $|t \in U^\alpha| = |t \notin U^\alpha| = \omega \cdot \alpha$
3. $|B_0 \land B_1| = |B_0 \lor B_1| = \max(|B_0|, |B_1|) + 1$
The **cut-rank** of a formula A, $|A|$, is defined as follows:

1. $|L| = 0$ for arithmetical literals L.
2. $|t \in U^\alpha| = |t \notin U^\alpha| = \omega \cdot \alpha$
3. $|B_0 \land B_1| = |B_0 \lor B_1| = \max(|B_0|, |B_1|) + 1$
4. $|\forall x B(x)| = |\exists x B(x)| = |t \in \{x \mid B(x)\}| = |t \notin \{x \mid B(x)\}| = |B(0)| + 1$
The **cut-rank** of a formula A, $|A|$, is defined as follows:

1. $|L| = 0$ for arithmetical literals L.
2. $|t \in U^\alpha| = |t \notin U^\alpha| = \omega \cdot \alpha$
3. $|B_0 \land B_1| = |B_0 \lor B_1| = \max(|B_0|, |B_1|) + 1$
4. $|\forall x B(x)| = |\exists x B(x)| = |t \in \{ x \mid B(x) \}| = |t \notin \{ x \mid B(x) \}| = |B(0)| + 1$
5. $|\forall X^\alpha A(X^\alpha)| = |\exists X^\alpha A(X^\alpha)| = \max(\omega \cdot \gamma, |A(U^0)| + 1)$

where γ is the level of $\forall X^\alpha A(X^\alpha)$.
Cut-elimination for RA∞
Cut-elimination for RA$^\infty$

- **Theorem I:**
 \[\Gamma \vdash_{\text{RA}^\infty} \alpha \eta + 1 \]

- **Theorem II:**
 \[\Gamma \vdash_{\text{RA}^\infty} \phi \rho \alpha \]

From arithmetic to set theory
Cut-elimination for \(RA^\infty \)

Theorem:

Cut-elimination I:

If \(RA^\infty \vdash_{\eta+1} \Gamma \) then \(RA^\infty \vdash_{\eta} \Gamma \)
Cut-elimination for RA^∞

Theorem:

Cut-elimination I:

If $\text{RA}^\infty \frac{\alpha}{\eta+1} \Gamma$ then $\text{RA}^\infty \frac{\omega^\alpha}{\eta} \Gamma$

Theorem:

Cut-elimination II:

If $\text{RA}^\infty \frac{\alpha}{\omega^\rho} \Gamma$ then $\text{RA}^\infty \frac{\varphi \rho^\alpha}{0} \Gamma$
Impredicative Proof Theory

Impredicative Definitions: Poincaré, Russell, Weyl

• An impredicative definition of an object refers to a presumed totality of which the object being defined is itself to be a member.

• Example: to define a set of natural numbers X as $X = \{ n \in \mathbb{N} : \forall Y \subseteq \mathbb{N} F(n, Y) \}$ is impredicative since it involves the quantified variable '$Y' ranging over arbitrary subsets of the natural numbers \mathbb{N}, of which the set X being defined is one member.

• Π_1^1-CA$_0$ is an impredicative theory.
• An impredicative definition of an object refers to a presumed totality of which the object being defined is itself to be a member.
An **impredicative definition** of an object refers to a presumed totality of which the object being defined is itself to be a member.

Example: to define a set of natural numbers X as

$$X = \{ n \in \mathbb{N} : \forall Y \subseteq \mathbb{N} \ F(n, Y) \}$$

is impredicative since it involves the quantified variable ‘Y’ ranging over arbitrary subsets of the natural numbers \mathbb{N}, of which the set X being defined is one member.
Impredicative Proof Theory
Impredicative Definitions: Poincaré, Russell, Weyl

• An impredicative definition of an object refers to a presumed totality of which the object being defined is itself to be a member.

• Example: to define a set of natural numbers X as

$$X = \{ n \in \mathbb{N} : \forall Y \subseteq \mathbb{N} \ F(n, Y) \}$$

is impredicative since it involves the quantified variable ‘Y’ ranging over arbitrary subsets of the natural numbers \mathbb{N}, of which the set X being defined is one member.

• Π^1_1-CA$_0$ is an impredicative theory.
• **Kripke-Platek set theory**, \textbf{KP}, is a fragment of \textbf{ZFC}.
• Kripke-Platek set theory, **KP**, is a fragment of **ZFC**.
• **KP** has no Choice, no Power Set Axiom
Kripke-Platek Set Theory

- Kripke-Platek set theory, **KP**, is a fragment of **ZFC**.
- **KP** has no Choice, no Power Set Axiom
- Separation and **Collection** are restricted to formulas with **bounded** quantifiers
• Kripke-Platek set theory, **KP**, is a fragment of **ZFC**.
• KP has no Choice, no Power Set Axiom
• Separation and Collection are restricted to formulas with bounded quantifiers
• Admissible Sets are transitive models of KP
Kripke-Platek Set Theory

- Kripke-Platek set theory, KP, is a fragment of ZFC.
- KP has no Choice, no Power Set Axiom
- Separation and Collection are restricted to formulas with bounded quantifiers
- Admissible Sets are transitive models of KP
- Admissible Ordinals: ordinals \(\alpha \) satisfying \(\mathbf{L}_\alpha \models \text{KP} \)
Kripke-Platek Set Theory

- Kripke-Platek set theory, **KP**, is a fragment of **ZFC**.
- **KP** has no Choice, no Power Set Axiom
- Separation and Collection are restricted to formulas with bounded quantifiers
- Admissible Sets are transitive models of **KP**
- Admissible Ordinals: ordinals α satisfying $L_\alpha \models KP$
- Gödel’s Constructible Hierarchy L:

\[
\begin{align*}
L_0 &= \emptyset, \\
L_\lambda &= \bigcup \{ L_\beta : \beta < \lambda \} \text{ λ limit} \\
L_{\beta+1} &= \{ X : X \subseteq L_\beta; \ X \text{ definable over } \langle L_\beta, \in \rangle \}.
\end{align*}
\]
The **axioms** of KP are:

Extensionality: \(a = b \rightarrow [F(a) \leftrightarrow F(b)] \)

Foundation: \(\exists x G(x) \rightarrow \exists x [G(x) \land (\forall y \in x) \neg G(y)] \)

Pair: \(\exists x (x = \{a, b\}) \).

Union: \(\exists x (x = \bigcup a) \).

Infinity: \(\exists x \left[x \neq \emptyset \land (\forall y \in x)(\exists z \in x)(y \in z) \right] \).

\(\Delta_0 \) Separation: \(\exists x (x = \{y \in a : F(y)\}) \)

\(F(y) \Delta_0\)-formula.

\(\Delta_0 \) Collection: \((\forall x \in a)\exists y G(x, y) \rightarrow \exists z (\forall x \in a)(\exists y \in z) G(x, y) \)

for all \(\Delta_0 \)-formulas \(G \).

By a \(\Delta_0 \) formula we mean a formula of set theory in which all the quantifiers appear restricted, that is have one of the forms \((\forall x \in b) \) or \((\exists x \in b) \).
We have seen that in the case of **PA** the addition of an infinitary rule enables us to regain cut elimination.

\[\omega\text{-rule:}\]

\[
\frac{\Gamma, A(\bar{n}) \text{ for all } n}{\Gamma, \forall x A(x)}.
\]

An ordinal analysis for **PA** is then attained as follows:
We have seen that in the case of PA the addition of an infinitary rule enables us to regain cut elimination.

\(\omega\)-rule:

\[
\frac{\Gamma, A(\bar{n}) \text{ for all } n}{\Gamma, \forall x A(x)}.
\]

An ordinal analysis for PA is then attained as follows:

- Each PA-proof can be “unfolded” into a PA\(_{\omega}\)-proof of the same sequent.
We have seen that in the case of PA the addition of an infinitary rule enables us to regain cut elimination.

ω–rule:

$$
\Gamma, A(\bar{n}) \text{ for all } n \\
\frac{}{\Gamma, \forall x A(x)}.
$$

An ordinal analysis for PA is then attained as follows:

- Each PA–proof can be “unfolded” into a PA_ω–proof of the same sequent.
- Each such PA_ω–proof can be transformed into a cut–free PA_ω–proof of the same sequent of length $< \varepsilon_0$.
In order to obtain a similar result for set theories like KP, we have to work a bit harder. Guided by the ordinal analysis of PA, we would like to invent an infinitary rule which, when added to KP, enables us to eliminate cuts.

The first ordinal analysis of KP was given by Jäger in 1978.
As opposed to the natural numbers, it is not clear how to bestow a canonical name to each element of the set–theoretic universe. Here we will use Gödel’s constructible universe L. The constructible universe is “made” from the ordinals. It is pretty obvious how to “name” sets in L once we have names for ordinals at our disposal.
Recall that L_α, the αth level of Gödel's constructible hierarchy L, is defined by

\[
L_0 = \emptyset, \\
L_\lambda = \bigcup \{L_\beta : \beta < \lambda\} \quad \text{\(\lambda\) limit} \\
L_{\beta+1} = \{X : X \subseteq L_\beta; X \text{ definable over } \langle L_\beta, \in \rangle\}.
\]

So any element of L of level α is definable from elements of L with levels $< \alpha$ and the parameter L_{α_0} if $\alpha = \alpha_0 + 1$.

FROM ARITHMETIC TO SET THEORY
Henceforth \(\Omega \) will be a name for a large ordinal or even the whole class of ordinals.
• Henceforth Ω will be a name for a large ordinal or even the whole class of ordinals.

• The problem of “naming” sets will be solved by building a formal constructible hierarchy using the ordinals $< \Omega$.
Definition The RS_{Ω}–terms and their levels are generated as follows.

1. For each $\alpha < \Omega$, $\llbracket L_\alpha \rrbracket$ is an RS_{Ω}–term of level α.

2. The formal expression

$$\{ x \in \llbracket L_\alpha \rrbracket : F(x, \bar{s}) \}_{L_\alpha}$$

is an RS_{Ω}–term of level α if $F(a, \bar{b})$ is an L–formula (whose free variables are among the indicated) and $\bar{s} \equiv s_1, \ldots, s_n$ are RS_{Ω}–terms with levels $< \alpha$.

$F(x, \bar{s}) \llbracket L_\alpha \rrbracket$ results from $F(x, \bar{s})$ by restricting all unbounded quantifiers to L_α.
Let \mathcal{T} be the collection of all RS_Ω-terms. For $t \in \mathcal{T}$, $|t|$ denotes the level of t, i.e. the maximum ordinal α such that L_α occurs in t.

We denote by upper case Greek letters

$$\Gamma, \Delta, \Lambda, \ldots$$

finite sets of RS_Ω–formulae. The intended meaning of

$$\Gamma = \{A_1, \cdots, A_n\}$$

is the disjunction

$$A_1 \lor \cdots \lor A_n$$

Γ, A stands for $\Gamma \cup \{A\}$ etc..
The rules of RS_Ω are:

$$(\land) \quad \frac{\Gamma, A \quad \Gamma, A'}{\Gamma, A \land A'}$$

$$(\lor) \quad \frac{\Gamma, A_i}{\Gamma, A_0 \lor A_1} \quad \text{if } i = 0 \text{ or } i = 1$$

$$(b\forall) \quad \frac{\cdots \Gamma, s \in t \rightarrow F(s) \cdots (|s| < |t|)}{\Gamma, (\forall x \in t) F(x)}$$

$$(b\exists) \quad \frac{\Gamma, s \in t \land F(s)}{\Gamma, (\exists x \in t) F(x)} \quad \text{if } |s| < |t|$$

$$(\forall) \quad \frac{\cdots \Gamma, F(s) \cdots (s \in T)}{\Gamma, (\forall x) F(x)}$$

$$(\exists) \quad \frac{\Gamma, F(s)}{\Gamma, (\exists x) F(x)} \quad \text{if } s \in T$$
\[(\notin)\quad \cdots \Gamma, s \in t \rightarrow r \neq s \cdots \cdots (|s| < |t|) \]
\[
\Gamma, r \notin t
\]

\[(\in)\quad \Gamma, s \in t \land r = s \quad \text{if } |s| < |t|
\]
\[
\Gamma, r \in t
\]

\[(\text{Cut})\quad \Gamma, A \quad \Gamma, \neg A
\]
\[
\Gamma
\]

\[(\text{Ref}_\Sigma)\quad \Gamma, A
\]
\[
\Gamma, \exists z A^z
\]

if \(A \) is a \(\Sigma \)-formula,

where a formula is said to be in \(\Sigma \) if all its unbounded quantifiers are existential.

\(A^z \) results from \(A \) by restricting all unbounded quantifiers to \(z \).
\mathcal{H}–controlled derivations

If we dropped the rule (Ref_Σ) from RS_Ω, the remaining calculus would enjoy full cut elimination owing to the symmetry of the pairs of rules

$$(\land) \quad (\lor)$$
$$(\forall) \quad (\exists)$$
$$(\not\in) \quad (\in)$$
However, partial cut elimination for RS_Ω can be attained by delimiting a collection of derivations of a very uniform kind. Buchholz developed a very elegant and flexible setting for describing uniformity in infinitary proofs, called operator controlled derivations.
Definition Let

\[P(ON) = \{ X : X \text{ is a set of ordinals} \}. \]

A class function

\[\mathcal{H} : P(ON) \rightarrow P(ON) \]

will be called operator if \(\mathcal{H} \) is a closure operator, i.e. monotone, inclusive and idempotent, and satisfies the following conditions for all \(X \in P(ON) \):

1. \(0 \in \mathcal{H}(X) \).
2. If \(\alpha \) has Cantor normal form \(\omega^{\alpha_1} + \cdots + \omega^{\alpha_n} \), then \(\alpha \in \mathcal{H}(X) \iff \alpha_1, \ldots, \alpha_n \in \mathcal{H}(X) \).

The latter ensures that \(\mathcal{H}(X) \) will be closed under + and \(\sigma \mapsto \omega^\sigma \), and decomposition of its members into additive and multiplicative components.
For a term s, the operator $\mathcal{H}[s]$ is defined by

$$\mathcal{H}[s](X) = \mathcal{H}(X \cup \{ \text{all ordinals in } s \})$$
Definition Let \mathcal{H} be an operator and let Γ be a finite set of RS_{Ω}–formulae.

$$\mathcal{H} \models_{\rho} \Gamma$$

is defined by recursion on α. It is always demanded that

$$\{\alpha\} \cup k(\Gamma) \subseteq \mathcal{H}(\emptyset).$$

The inductive clauses are:
\[(\exists) \quad \frac{\mathcal{H} \models_{\rho}^{\alpha_0} \Gamma, F(s)}{\mathcal{H} \models_{\rho}^{\alpha} \Gamma, \exists x F(x)} \qquad \alpha_0 < \alpha \quad |s| < \alpha\]

\[(\forall) \quad \frac{\mathcal{H}[s] \models_{\rho}^{\alpha_s} \Gamma, F(s) \text{ for all } s}{\mathcal{H} \models_{\rho}^{\alpha} \Gamma, \forall x F(x)} \qquad |s| \leq \alpha_s < \alpha\]

\[(\text{Cut}) \quad \frac{\mathcal{H} \models_{\rho}^{\alpha_0} \Gamma, B \quad \mathcal{H} \models_{\rho}^{\alpha_0} \Gamma, \neg B}{\mathcal{H} \models_{\rho}^{\alpha} \Gamma} \qquad \alpha_0 < \alpha \quad \text{rk}(B) < \rho}\]

\[(\text{Ref}_\Sigma) \quad \frac{\mathcal{H} \models_{\rho}^{\alpha_0} \Gamma, A}{\mathcal{H} \models_{\rho}^{\alpha} \Gamma, \exists z A^z} \quad \alpha_0, \Omega < \alpha \quad A \in \Sigma\]
To connect \textbf{KP} with the infinitary system \textit{RS}_Ω one has to show that \textbf{KP} can be embedded into \textit{RS}_Ω. Indeed, the finite \textbf{KP}-derivations give rise to very uniform infinitary derivations.
Theorem:

If

\[\text{KP} \vdash B(a_1, \ldots, a_r) \]

then

\[\mathcal{H} \left| \Omega \cdot m \atop \Omega + n \right| B(s_1, \ldots, s_r) \]

holds for some \(m, n \) and all set terms \(s_1, \ldots, s_r \) and operators \(\mathcal{H} \) satisfying

\[\{ \xi : \xi \text{ occurs in } B(\vec{s}) \} \subseteq \mathcal{H}(\emptyset). \]

\(m \) and \(n \) depend only on the KP-derivation of \(B(\vec{a}) \).
The usual cut elimination procedure works as long as the cut formulae have not been introduced by an inference Ref_Σ. As the principal formula of an inference Ref_Σ has rank Ω one gets the following result.
Theorem: (Cut elimination I)

\[\mathcal{H} \frac{\alpha}{\Omega+n+1} \Gamma \Rightarrow \mathcal{H} \frac{\omega_n(\alpha)}{\Omega+1} \Gamma \]

where \(\omega_0(\beta) := \beta \) and \(\omega_{k+1}(\beta) := \omega^{\omega_k}(\beta) \).
The obstacle to pushing cut elimination further is exemplified by the following scenario:

\[
\begin{align*}
\cH \models^\delta \Gamma, A \\
\cH \models^\xi \Gamma, \exists z A^z \\
\cH \models^\Omega \Gamma \quad \text{(Ref}_\Sigma) \\
\cH \models^\xi \Gamma, \forall z \neg A^z \quad \text{(\forall)} \\
\cH \models^\alpha \Omega + 1 \Gamma \quad \text{(Cut)} \\
\cH \models^\delta \Gamma, A \\
\cH [S] \models^\xi \Gamma, \neg A^s \ldots (s \in T) \quad \text{(\forall)}
\end{align*}
\]
Fortunately, it is possible to eliminate cuts in the above situation provided that the side formulae Γ are of complexity Σ. The technique is known as “collapsing” of derivations.
In the course of "collapsing" one makes use of a simple bounding principle.

Lemma: (Boundedness)

Let A be a Σ-formula, $\alpha \leq \beta < \Omega$, and $\beta \in H(\emptyset)$. If $H_{\alpha} \rho \Gamma$, then $H_{\alpha} \rho \Gamma$.
In the course of “collapsing” one makes use of a simple bounding principle.
In the course of “collapsing” one makes use of a simple bounding principle.

Lemma: (Boundedness)

Let A be a Σ-formula, $\alpha \leq \beta < \Omega$, and $\beta \in \mathcal{H}(\emptyset)$. If

$$
\mathcal{H} \models_{\rho} \Gamma, A
$$

then

$$
\mathcal{H} \models_{\rho} \Gamma, A^{\perp, \beta}
$$
If the length of a derivation of Σ-formulae is $\geq \Omega$, then “collapsing” results in a shorter derivation, however, at the cost of a much more complicated controlling operator.
An ordinal representation system for the Bachmann-Howard ordinal

The Veblen-function φ figures prominently in elementary proof theory. It is defined by transfinite recursion on α by letting $\varphi_0(\xi) := \omega^\xi$ and, for $\alpha > 0$, φ_α be the function that enumerates the class of ordinals

$$\{\gamma : \forall \xi < \alpha [\varphi_\xi(\gamma) = \gamma]\}.$$

We shall write $\varphi_{\alpha\beta}$ instead of $\varphi_\alpha(\beta)$.

Let Γ_α be the α^{th} ordinal $\rho > 0$ such that for all $\beta, \gamma < \rho$, $\varphi_\beta \gamma < \rho$.

Corollary

1. $\varphi_0 \beta = \omega^\beta$.
2. $\xi, \eta < \varphi_\alpha \beta \implies \xi + \eta < \varphi_\alpha \beta$.
3. $\xi < \zeta \implies \varphi_\alpha \xi < \varphi_\alpha \zeta$.
4. $\alpha < \beta \implies \varphi_\alpha(\varphi_\beta \xi) = \varphi_\beta \xi$.

From arithmetic to set theory
The least ordinal ($\succ 0$) closed under the function φ is known as Γ_0

The proof-theoretic ordinal of KP, however, is bigger than Γ_0 and we need another function to obtain a sufficiently large ordinal representation system.
Let Ω be a “big” ordinal. By recursion on α we define sets $C^\Omega(\alpha, \beta)$ and the ordinal $\psi_\Omega(\alpha)$ as follows:

\[
C^\Omega(\alpha, \beta) = \begin{cases}
\text{closure of } \beta \cup \{0, \Omega\} \\
\text{under:} \\
+ , (\xi \mapsto \omega^\xi) \\
(\xi \mapsto \psi_\Omega(\xi))_{\xi < \alpha}
\end{cases}
\]

(2)

\[
\psi_\Omega(\alpha) \simeq \min \{ \rho < \Omega : C^\Omega(\alpha, \rho) \cap \Omega = \rho \}.
\]

(3)
Note that if $\psi_\Omega(\alpha)$ is defined, then

$$\psi_\Omega(\alpha) < \Omega$$

and

$$[\psi_\Omega(\alpha), \Omega) \cap C^\Omega(\alpha, \psi_\Omega(\alpha)) = \emptyset$$

thus the order-type of the ordinals below Ω which belong to the Skolem hull $C^\Omega(\alpha, \psi_\Omega(\alpha))$ is $\psi_\Omega(\alpha)$.

In more pictorial terms, $\psi_\Omega(\alpha)$ is the α^{th} collapse of Ω.
Lemma $\psi_\Omega(\alpha)$ is always defined; in particular $\psi_\Omega(\alpha) < \Omega$.
Proof: The claim is actually not a definitive statement as I haven’t yet said what largeness properties Ω has to satisfy. In the proof below, we assume $\Omega := \aleph_1$, i.e. Ω is the first uncountable cardinal.

Observe first that for a limit ordinal λ,

$$C^\Omega(\alpha, \lambda) = \bigcup_{\xi < \lambda} C^\Omega(\alpha, \xi)$$

since the right hand side is easily shown to be closed under the clauses that define $C^\Omega(\alpha, \lambda)$.

FROM ARITHMETIC TO SET THEORY
Now define

\[
\eta_0 = \sup C^\Omega(\alpha, 0) \cap \Omega \\
\eta_{n+1} = \sup C^\Omega(\alpha, \eta_n) \cap \Omega \\
\eta^* = \sup_{n<\omega} \eta_n.
\]

(4)

Since for \(\eta < \Omega \) the cardinality of \(C^\Omega(\alpha, \eta) \) is the same as that of \(\max(\eta, \omega) \) and therefore less than \(\Omega \), the regularity of \(\Omega \) implies that \(\eta_0 < \Omega \). By repetition of this argument one obtains \(\eta_n < \Omega \), and consequently \(\eta^* < \Omega \). The definition of \(\eta^* \) then ensures

\[
C^\Omega(\alpha, \eta^*) \cap \Omega = \bigcup_n C^\Omega(\alpha, \eta_n) \cap \Omega = \eta^* < \Omega.
\]

Therefore, \(\psi_\Omega(\alpha) < \Omega \). \(\square \)
Let
\[\varepsilon_{\Omega+1} \]
be the least ordinal \(\alpha > \Omega \) such that \(\omega^\alpha = \alpha \).

The next definition singles out a subset
\[T(\Omega) \]
of
\[C^\Omega(\varepsilon_{\Omega+1}, 0) \]
which gives rise to an ordinal representation system, i.e., there is an elementary ordinal representation system
\[\langle OR, <, \hat{R}, \hat{\psi}, \ldots \rangle \]
so that
\[\langle T(\Omega), <, R, \psi, \ldots \rangle \cong \langle OR, <, \hat{R}, \hat{\psi}, \ldots \rangle. \] (5)

“…” is supposed to indicate that more structure carries over to the ordinal representation system.
Definition $\mathcal{T}(\Omega)$ is defined inductively as follows:

1. $0, \Omega \in \mathcal{T}(\Omega)$.

2. If $\alpha_1, \ldots, \alpha_n \in \mathcal{T}(\Omega)$ and $\omega^{\alpha_1} + \cdots + \omega^{\alpha_n} > \alpha_1 \geq \ldots \geq \alpha_n$, then $\omega^{\alpha_1} + \cdots + \omega^{\alpha_n} \in \mathcal{T}(\Omega)$.

3. If $\alpha \in \mathcal{T}(\Omega)$ and $\alpha \in C^\Omega(\alpha, \psi_\Omega(\alpha))$, then $\psi_\Omega(\alpha) \in \mathcal{T}(\Omega)$.

FROM ARITHMETIC TO SET THEORY
The side condition in the second clause is easily explained by the desire to have unique representations in \(T(\Omega) \).

The requirement

\[\alpha \in C^\Omega(\alpha, \psi_\Omega(\alpha)) \]

in the third clause also serves the purpose of unique representations (and more) but is probably a bit harder to explain. The idea here is that from \(\psi_\Omega(\alpha) \) one should be able to retrieve the stage (namely \(\alpha \)) where it was generated. This is reflected by

\[\alpha \in C^\Omega(\alpha, \psi_\Omega(\alpha)). \]
It can be shown that the foregoing definition of $\mathcal{T}(\Omega)$ is deterministic, that is to say every ordinal in $\mathcal{T}(\Omega)$ is generated by the inductive clauses in exactly one way. As a result, every

$$\gamma \in \mathcal{T}(\Omega)$$

has a unique representation in terms of symbols for $0, \Omega$

and function symbols for $+$, $\alpha \mapsto \omega^\alpha$, $\alpha \mapsto \psi_\Omega(\alpha)$.

The unique representation of will be referred to as the normal form.
Thus, by taking some primitive recursive (injective) coding function $[\cdots]$ on finite sequences of natural numbers, we can code $\mathcal{T}(\Omega)$ as a set of natural numbers as follows:

$$\ell(\alpha) = \begin{cases}
[0, 0] & \text{if } \alpha = 0 \\
[1, 0] & \text{if } \alpha = \Omega \\
[2, \ell(\alpha_1), \cdots, \ell(\alpha_n)] & \text{if } \alpha = \omega^{\alpha_1} + \cdots + \omega^{\alpha_n} \\
[3, \ell(\beta), \ell(\Omega)] & \text{if } \alpha = \psi_\Omega(\beta),
\end{cases}$$

where the distinction by cases refers to the unique representation of ordinals in $\mathcal{T}(\Omega)$. With the aid of ℓ, the ordinal representation system (5) can be defined by letting OR be the image of ℓ and setting

$$\langle \text{OR}, \langle, \hat{R}, \hat{\psi}, \ldots \rangle$$

etc. However, a proof that this definition of

in point of fact furnishes an elementary ordinal representation system is a bit lengthy.
Theorem: (Collapsing Theorem)

Let Γ be a set of Σ-formulae. Then we have

\[
\mathcal{H}_\eta \models^\alpha_{\Omega+1} \Gamma \quad \Rightarrow \quad \mathcal{H}_{f(\eta,\alpha)} \models^{\psi_\Omega(f(\eta,\alpha))}_{\psi_\Omega(f(\eta,\alpha))} \Gamma
\]

where $\left(\mathcal{H}_\xi \right)_{\xi \in \mathcal{T}(\Omega)}$ is a uniform sequence of ever stronger operators.
$\mathcal{H}_\delta(X) = \bigcap \{ C^\Omega(\alpha, \beta) : X \subseteq C^\Omega(\alpha, \beta) \land \delta < \alpha \}$
From the Bounding Lemma it follows that all instances of Ref_Σ can be removed from derivations of length $< \Omega$.
For derivations without instances of Ref_Σ there is predicative cut-elimination.
For derivations without instances of Ref_Σ there is predicative cut-elimination.

Theorem: (Predicative cut elimination)

$\mathcal{H} \vdash_\rho \Gamma$ and $\delta, \rho < \Omega \Rightarrow \mathcal{H} \vdash_0 \varphi \rho \delta \Gamma$.
The ordinal $\psi_\Omega(\varepsilon_{\Omega+1})$ is known as the Bachmann-Howard ordinal. Combining the previous results of this section, one obtains:

Corollary: If A is a Π_2-formula and $\text{KP} \vdash A$ then $L_{\psi_\Omega(\varepsilon_{\Omega+1})} \models A$.

The bound of this Corollary is sharp, that is, $\psi_\Omega(\varepsilon_{\Omega+1})$ is the first ordinal with that property.
We call a formula of $L \in \Delta P_0$ if all its quantifiers are of the form $\forall x \subseteq y$ or $\exists x \in y$ where \forall is \forall or \exists and x and y are distinct variables. The ΔP_0 formulas are the smallest class of formulae containing the atomic formulae closed under \land, \lor, \rightarrow, \neg and the quantifiers $\forall x \in a$, $\exists x \in a$, $\forall x \subseteq a$, $\exists x \subseteq a$. $KP(P)$ has the following axioms: Extensionality, Pairing, Union, Infinity, Powerset, ΔP_0-Separation and ΔP_0-Collection.
We call a formula of $\mathcal{L} \in \Delta^P_0$ if all its quantifiers are of the form $Q x \subseteq y$ or $Q x \in y$ where Q is \forall or \exists and x and y are distinct variables.
We call a formula of $\mathcal{L} \in \Delta_0^P$ if all its quantifiers are of the form $Q x \subseteq y$ or $Q x \in y$ where Q is \forall or \exists and x and y are distinct variables.

The Δ_0^P formulas are the smallest class of formulae containing the atomic formulae closed under \wedge, \vee, \rightarrow, \neg and the quantifiers

$$\forall x \in a, \exists x \in a, \forall x \subseteq a, \exists x \subseteq a.$$
We call a formula of $L \in \Delta_0^P$ if all its quantifiers are of the form $Q x \subseteq y$ or $Q x \in y$ where Q is \forall or \exists and x and y are distinct variables.

The Δ_0^P formulas are the smallest class of formulae containing the atomic formulae closed under $\land, \lor, \rightarrow, \neg$ and the quantifiers

$$\forall x \in a, \exists x \in a, \forall x \subseteq a, \exists x \subseteq a.$$

$\mathsf{KP}(P)$ has the following axioms: Extensionality, Pairing, Union, Infinity, Powerset, Δ_0^P-Separation and Δ_0^P-Collection.
Remark.

KP(P) is not the same as KP + Powerset. The latter is a much weaker theory in which one cannot prove the existence of V_{\omega + \omega}.

Alternatively, KP(P) can be obtained from KP by adding a function symbol P for the powerset function as a primitive symbol to the language and the axiom \forall y [y \in P(x) \iff y \subseteq x] and extending the schemes of \Delta_0 Separation and Collection to the \Delta_0 formulae of this new language.

The power admissible sets are the transitive models of KP(P).
Remark.

1. $\text{KP}(\mathcal{P})$ is not the same as $\text{KP} + \text{Powerset}$. The latter is a much weaker theory in which one cannot prove the existence of $V_{\omega+\omega}$.

2. Alternatively, $\text{KP}(\mathcal{P})$ can be obtained from KP by adding a function symbol \mathcal{P} for the powerset function as a primitive symbol to the language and the axiom $orall y [y \in \mathcal{P}(x) \iff y \subseteq x]$ and extending the schemes of Δ_0 Separation and Collection to the Δ_0 formulae of this new language.

3. The power admissible sets are the transitive models of $\text{KP}(\mathcal{P})$.

FROM ARITHMETIC TO SET THEORY
Remark.

1. **KP(\mathcal{P})** is not the same as **KP + Powerset**. The latter is a much weaker theory in which one cannot prove the existence of \(V_{\omega + \omega} \).

2. Alternatively, **KP(\mathcal{P})** can be obtained from **KP** by adding a function symbol \(\mathcal{P} \) for the powerset function as a primitive symbol to the language and the axiom

\[
\forall y \ [y \in \mathcal{P}(x) \leftrightarrow y \subseteq x]
\]

and extending the schemes of \(\Delta_0 \) Separation and Collection to the \(\Delta_0 \) formulae of this new language.
Remark.

1. \(\text{KP}(\mathcal{P}) \) is not the same as \(\text{KP} + \text{Powerset} \). The latter is a much weaker theory in which one cannot prove the existence of \(V_{\omega+\omega} \).

2. Alternatively, \(\text{KP}(\mathcal{P}) \) can be obtained from \(\text{KP} \) by adding a function symbol \(\mathcal{P} \) for the powerset function as a primitive symbol to the language and the axiom

 \[
 \forall y [y \in \mathcal{P}(x) \leftrightarrow y \subseteq x]
 \]

 and extending the schemes of \(\Delta_0 \) Separation and Collection to the \(\Delta_0 \) formulae of this new language.

3. The **power admissible** sets are the transitive models of \(\text{KP}(\mathcal{P}) \).
The techniques used for the ordinal analysis of KP can be adapted to yield the following result about $\text{KP}(\mathcal{P}) + \text{AC}$:

Theorem (R. 2012)
If A is a Π^P_2-formula and

$$\text{KP}(\mathcal{P}) + \text{AC} \vdash A$$

then

$$V_{\psi(\epsilon_{\Omega+1})} \models A.$$

The bound of this Corollary is sharp, that is, $\psi(\epsilon_{\Omega+1})$ is the first ordinal with that property.
Admissible sets L_κ have the property that if $A(x, y)$ is a bounded formula, then

$$L_\kappa \models \forall x \exists y A(x, y) \Rightarrow \exists \alpha < \kappa \ L_\alpha \models \forall x \exists y A(x, y).$$
Admissible Proof Theory

Admissible Proof Theory: Cut elimination and proof collapsing techniques for infinitary proof calculi with \(\Pi_2 \)-reflection rules

Works for theories of the form:

- \(K\Pi + \text{"there are } x \text{-many admissible sets"} \)
- \(K\Pi + \text{"there are many admissible sets"} \)
- e.g., \(K\Pi_1 := K\Pi + \forall x \exists y [x \in y \land \text{"y admissible"}] \).
- \(K\Pi \equiv \Delta_1^2 - CA + BI \)
Admissible Proof Theory: Cut elimination and proof collapsing techniques for infinitary proof calculi with Π_2-reflection rules

- $\text{KP} + \text{“there are } x \text{-many admissible sets”}$
- $\text{KP} + \text{“there are many admissible sets”}$
- $\text{KPi} = \text{KP} + \forall x \exists y [x \in y \land \text{“} y \text{ is admissible”}]$.

$\text{KPi} \equiv \Delta_1^2 \text{-CA} + \text{BI}$
Admissible Proof Theory

- Admissible Proof Theory: Cut elimination and proof collapsing techniques for infinitary proof calculi with Π_2-reflection rules
- Works for theories of the form:

 - $\text{KP} + \text{"there are } x \text{-many admissible sets"}$
 - $\text{KP} + \text{"there are many admissible sets"}$
 - e.g., $\text{KPi } \equiv \text{KP} + \forall x \exists y [x \in y \land \text{"y admissible"}]$.

FROM ARITHMETIC TO SET THEORY
Admissible Proof Theory

- Admissible Proof Theory: Cut elimination and proof collapsing techniques for infinitary proof calculi with \(\Pi_2 \)-reflection rules
- Works for theories of the form:
 - \(\text{KP} + \text{"there are } x \text{-many admissible sets"} \)
Admissible Proof Theory: Cut elimination and proof collapsing techniques for infinitary proof calculi with Π_2-reflection rules

Works for theories of the form:
- $\text{KP} + \text{“there are } x\text{-many admissible sets”}$
- $\text{KP} + \text{“there are many admissible sets”}$
Admissible Proof Theory

- Admissible Proof Theory: Cut elimination and proof collapsing techniques for infinitary proof calculi with Π_2-reflection rules
- Works for theories of the form:
 - $\text{KP} + \text{“there are } x\text{-many admissible sets”}$
 - $\text{KP} + \text{“there are many admissible sets”}$
 - e.g., $\text{KPi} := \text{KP} + \forall x \exists y [x \in y \land \text{“} y \text{ admissible”}]$.
Admissible Proof Theory

- Admissible Proof Theory: Cut elimination and proof collapsing techniques for infinitary proof calculi with Π_2-reflection rules
- Works for theories of the form:
 - $\text{KP} + \text{"there are } x\text{-many admissible sets"}$
 - $\text{KP} + \text{"there are many admissible sets"}$
 - e.g., $\text{KPi} := \text{KP} + \forall x \exists y [x \in y \land \text{"y admissible"}]$.
- $\text{KPi} \equiv \Delta^1_2\text{-CA} + \text{BI}$
Beyond Admissible Proof Theory

- Π^1_2-Comprehension much stronger than Π^1_1-Comprehension and Δ^1_2-Comprehension.
Beyond Admissible Proof Theory

- Π_2^1-Comprehension much stronger than Π_1^1-Comprehension and Δ_2^1-Comprehension.
- Π_2^1-Comprehension cannot be described in terms of admissibility.
Beyond Admissible Proof Theory

- Π^1_2-Comprehension much stronger than Π^1_1-Comprehension and Δ^1_2-Comprehension.
- Π^1_2-Comprehension cannot be described in terms of admissibility.
- $\text{KP} + \Sigma^1_1$-Separation and $(\Pi^1_2$-CA$) + \text{BI}$ prove the same sentences of second order arithmetic.
Beyond Admissible Proof Theory

- Π^1_2-Comprehension much stronger than Π^1_1-Comprehension and Δ^1_2-Comprehension.
- Π^1_2-Comprehension cannot be described in terms of admissibility.
- $\mathbf{KP} + \Sigma^1_1$-Separation and $(\Pi^1_2$-$\mathbf{CA}) + \mathbf{BI}$ prove the same sentences of second order arithmetic.
- An admissible ordinal κ is nonprojectible if there is no total κ--recursive function mapping κ--one--one into some $\beta < \kappa$, where a function $g : L_\kappa \rightarrow L_\kappa$ is called κ--recursive if it is Σ^1_1 definable in L_κ.
Beyond Admissible Proof Theory

- Π_2^1-Comprehension much stronger than Π_1^1-Comprehension and Δ_2^1-Comprehension.
- Π_2^1-Comprehension cannot be described in terms of admissibility.
- $\text{KP} + \Sigma_1$-Separation and $(\Pi_2^1\text{-CA}) + \text{BI}$ prove the same sentences of second order arithmetic.
- An admissible ordinal κ is nonprojectible if there is no total κ-recursive function mapping κ one-one into some $\beta < \kappa$, where a function $g : L_\kappa \rightarrow L_\kappa$ is called κ-recursive if it is Σ_1 definable in L_κ.
- $L_\kappa \models \text{KP} + \Sigma_1$-Separation iff κ is non-projectible.
Beyond Admissible Proof Theory

- Π^1_2-Comprehension much stronger than Π^1_1-Comprehension and Δ^1_2-Comprehension.
- Π^1_2-Comprehension cannot be described in terms of admissibility.
- $\textbf{KP} + \Sigma^1_1$-Separation and $(\Pi^1_2\text{-CA}) + \textbf{BI}$ prove the same sentences of second order arithmetic.
- An admissible ordinal κ is nonprojectible if there is no total κ–recursive function mapping κ one–one into some $\beta < \kappa$, where a function $g : L_{\kappa} \rightarrow L_{\kappa}$ is called κ–recursive if it is Σ^1_1 definable in L_{κ}.
- $L_{\kappa} \models \textbf{KP} + \Sigma^1_1$-Separation iff κ is non-projectible.
- κ is nonprojectible iff L_{κ} is a limit of Σ^1–elementary substructures, i.e. for every $\beta < \kappa$ there exists $\beta < \rho < \kappa$ such that $L_{\rho} \prec_1 L_{\kappa}$.
Let $\rho < \kappa$ and $L_\rho \prec_1 L_\kappa$.
• Let \(\rho < \kappa \) and \(L_\rho \prec_1 L_\kappa \).

• Then \(\rho \) has strong reflecting properties. Suppose \(\rho + \delta < \kappa \).
\(\prec_1 \) and Reflection

- Let \(\rho < \kappa \) and \(L_\rho \prec_1 L_\kappa \).
- Then \(\rho \) has strong reflecting properties. Suppose \(\rho + \delta < \kappa \).
- If \(a_1, \ldots, a_r \in L_{\rho+\delta} \) and

\[
L_{\rho+\delta} \models A[\rho, a_1, \ldots, a_n],
\]

\[\text{FROM ARITHMETIC TO SET THEORY}\]
\begin{itemize}
 \item Let $\rho < \kappa$ and $L_{\rho} \prec_1 L_{\kappa}$.
 \item Then ρ has strong reflecting properties. Suppose $\rho + \delta < \kappa$.
 \item If $a_1, \ldots, a_r \in L_{\rho + \delta}$ and
 \[L_{\rho + \delta} \models A[\rho, a_1, \ldots, a_n], \]
 \item then there exists $\rho_0, \delta_0 < \rho$ and $b_1, \ldots, b_r \in L_{\rho_0 + \delta_0}$ such that
 \[L_{\rho_0 + \delta_0} \models A[\rho_0, b_1, \ldots, b_n]. \]
\end{itemize}
Future Work

- Apply the machinery to “traditional" set theory.
Future Work

- Apply the machinery to “traditional” set theory.
- Simplify the Ordinal Representation Systems for Π^1_2-Comprehension
- Find new Combinatorial Principles related to Ordinal Representation System for Π^1_2-Comprehension
- Carry out ordinal analysis for Π^1_n-Comprehension for all n, i.e. \mathbb{Z}_2.
- Is Π^1_2-Comprehension the generic case?
- Conjecture: Π^1_3-Comprehension is the generic case.
Future Work

- Apply the machinery to “traditional” set theory.
- Simplify the Ordinal Representation Systems for Π^1_2-Comprehension
- Find new Combinatorial Principles related to Ordinal Representation System for Π^1_2-Comprehension
- Carry out ordinal analysis for Π^1_n-Comprehension for all n, i.e. Z_2.
- Is Π^1_2-Comprehension the generic case?
- Conjecture: Π^1_3-Comprehension is the generic case.
Future Work

- Apply the machinery to “traditional” set theory.
- Simplify the Ordinal Representation Systems for Π^1_2-Comprehension
- Find new Combinatorial Principles related to Ordinal Representation System for Π^1_2-Comprehension
- Carry out ordinal analysis for Π^1_n-Comprehension for all n, i.e. \mathbb{Z}_2.

Is Π^1_2-Comprehension the generic case?

Conjecture: Π^1_3-Comprehension is the generic case.
Future Work

- Apply the machinery to “traditional” set theory.
- Simplify the Ordinal Representation Systems for \(\Pi^1_2 \)-Comprehension
- Find new Combinatorial Principles related to Ordinal Representation System for \(\Pi^1_2 \)-Comprehension
- Carry out ordinal analysis for \(\Pi^1_n \)-Comprehension for all \(n \), i.e. \(Z_2 \).
- Is \(\Pi^1_2 \)-Comprehension the generic case?
Future Work

- Apply the machinery to “traditional” set theory.
- Simplify the Ordinal Representation Systems for Π^1_2-Comprehension
- Find new Combinatorial Principles related to Ordinal Representation System for Π^1_2-Comprehension
- Carry out ordinal analysis for Π^1_n-Comprehension for all n, i.e. \mathbb{Z}_2.
- Is Π^1_2-Comprehension the generic case?
- Conjecture: Π^1_3-Comprehension is the generic case.
THANK YOU!
THANK YOU!

Und wenn du lange in einen Abgrund blickst, blickt der Abgrund auch in dich hinein.

And if you gaze for long into an abyss, the abyss gazes also into you.

Friedrich NIETZSCHE (1886) Jenseits von Gut und Böse