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Introduction

Large cardinals are infinite cardinal numbers κ that enjoy special combinato-
rial properties implying that they are very large and that Vκ is a model of the
ZFC axioms of set theory, hence by Gödel’s second incompleteness theorem their
existence cannot be proved in ZFC. Most large cardinals can be characterized
as cardinals that reflect a substantial amount of the structure of the universe
V of all sets. For example, an inaccessible cardinal κ, the smallest kind of all
large cardinals, can be characterized as being regular and such that Vκ reflects
all existential statements, in the sense that if an existential statement involving
sets in Vκ is true in V , then it is witnessed by a set in Vκ.

The combinatorial and reflective properties of large cardinals can be used
for a variety of purposes. For example, for constructing mathematical objects
(topological spaces, algebraic structures, etc.) with special properties, whose
existence may not be provable in ZFC. Another use of large cardinals is to show
that a given mathematical statement cannot be proved in ZFC by showing that
the statement implies the existence of, or just the consistency of the existence of,
some large cardinal. In fact, large cardinals provide a measure of the strength of
formal systems beyond ZFC.

This course has few prerequisites. Some familiarity with first-order logic,
the ZFC axioms, definitions by transfinite recursion, and a basic knowledge of
ordinals and cardinals, which we shall review anyway in the Preliminaries section,
should suffice. Everything else will be self-contained.

We will use standard set-theoretic notation. The basic bibliographical refer-
ences are [1], Chapters 1-3, 5-10 of Part I; and [2], Chapter 1.
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Preliminaries

1. The language of set theory

The formal language of set theory is the first-order language, with equality,
whose only non-logical symbol is the binary relation symbol ∈. The formulas of
the language are defined recursively, as follows:

(1) Atomic formulas are of the form x = y or x ∈ y.
(2) If ϕ and ψ are formulas, then so are ¬ϕ, (ϕ∧ψ), (ϕ∨ψ), (ϕ→ ψ), and

(ϕ↔ ψ).
(3) If ϕ is a formula, then so are ∀xϕ and ∃xϕ.

Parentheses may be added after a quantifier to facilitate the reading, and may
be omitted if the formula can be read without ambiguity.

A variable is said to occur free in a formula if it does not fall within the range
of any quantifier. Thus x occurs free in the formula x ∈ y, and so does y. The
first occurrence of x in the formula ∀y(x ∈ y) ∧ ∃x(¬x ∈ z) is free, while the
second is not, as it is bound by the existential quantifier.

A formula with no variables occurring free in it is called a sentence.

2. The ZFC axioms

We will work in the ZFC (Zermelo-Fraenkel with Choice) axiom system, which
is the standard theory of sets. The axioms of Zermelo-Fraenkel are listed below.
We state them both informally and formalized in the language of set theory.
As is customary, we write ∀x ∈ a (. . .) for ∀x(x ∈ a → . . .), and ∃x ∈ a (. . .)
for ∃x(x ∈ a ∧ . . .). The actual formal axioms are the universal closure of the
displayed formulas.

Extensionality: If two sets a and b have the same elements, then they are
equal.

∀x(x ∈ a↔ x ∈ b)→ a = b

Pair: Given any sets a and b, there exists a set containing a and b as elements.

∃x(a ∈ x ∧ b ∈ x)

Union: For every set a, there is a set containing all elements of the elements
of a.

∃x∀y ∈ a∀z ∈ y(z ∈ x)

6



3. SETS VERSUS PROPER CLASSES 7

Power set: For every set a there is a set that contains all subsets of a.

∃x∀y(∀z ∈ y(z ∈ a)→ y ∈ x)

Infinity: There exists an infinite set.

∃x(∃y(y ∈ x) ∧ ∀y ∈ x∃z ∈ x(y ∈ z))

Foundation: Every non-empty set a contains an ∈-minimal element.

∃y(y ∈ a)→ ∃y ∈ a∀z ∈ a(z 6∈ y)

Separation: For every set a and every property, there is a set containing exactly
the elements of a that have this property.

∃x∀y(y ∈ x↔ y ∈ a ∧ ϕ(y))

for every formula ϕ(y) of the language of set theory in which x does not occur
free and which may have other free variables. So this is an infinite list of axioms,
one for each such formula ϕ(y).

Replacement: For every definable (multivalued) function on a set a, there is a
set containing all the values of the function.

∀x ∈ a∃yϕ(x, y)→ ∃z∀x ∈ a∃y ∈ z ϕ(x, y)

for every formula ϕ(x, y) of the language of set theory in which z does not occur
free and which may have other free variables. This is also an infinite list of
axioms, one for each such formula ϕ(x, y).

Observe that Separation follows easily from Replacement.

The Axiom of Choice (AC) is the following:
Choice: For every set a of pairwise disjoint non-empty sets, there exists a set

that contains exactly one element from each set in a.

AC is equivalent, modulo the Zermelo-Fraenkel axioms, to Zermelo’s Well-
Ordering Principle: Every set can be well-ordered. That is, for every set a there
exists an ordering relation on a that is a well-order. (Recall that a well-order
of a is a linear ordering of a in which every non-empty subset of a has a least
element.)

Another useful equivalent form of AC is Zorn’s Lemma (Hausdorff 1914): if
〈P,≤〉 is a partially-ordered set in which every linearly-ordered subset has an
upper bound in P, then there is a maximal element, i.e., some p ∈ P such that
for no q ∈ P we have p < q.

3. Sets versus proper classes

Some collections are not sets. For example, the collection of all sets, V , is not a
set. Otherwise, by the Separation axiom, there exists a set A =: {x ∈ V : x 6∈ x}.
But then A ∈ A if and only if A 6∈ A. This is known as Russell’s Paradox.
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Collections that are not sets are called proper classes. In ZFC, proper classes
are given by a formula, as in the previous example A was given by the formula
x 6∈ x.

4. Ordinals

A set A is transitive if it contains all elements of its elements.
An ordinal number, or simply an ordinal, is a transitive set well-ordered by

∈. The empty set ∅ is an ordinal.
If α and β are ordinal numbers, then α ∈ β if and only if α ⊂ β. Thus, α ∈ β

if and only if α is a proper ∈-initial segment of β. It follows that every ordinal
α is precisely the set of all its ∈-predecessors, which are themselves ordinals. We
usually write α < β for α ⊂ β, and α ≤ β for α ⊆ β. Thus, for all ordinal
numbers α and β, either α < β, or β < α, or α = β.

If α is an ordinal, then so is α∪ {α}. And if X is a set of ordinals, then
⋃
X

is also an ordinal. The ordinals form a proper class, denoted by Ω or OR, which
is well-ordered by ≤.

The (immediate) successor of an ordinal α is the ordinal α ∪ {α}, usually
denoted by α + 1. A limit ordinal is an ordinal that is neither empty nor a
successor.

The natural numbers are identified with the finite ordinals. Thus, 0 = ∅,
1 = {0}, 2 = {0, 1}, and so on. The set N of natural numbers is thus identified
with the first infinite ordinal number, which is also the first limit ordinal, and is
denoted by ω.

An ordinal is countable if it is either finite or bijectable with ω. The set of
all countable ordinals is not countable and is, therefore, the first uncountable
ordinal, denoted by ω1. The set of all ordinals bijectable with some α ≤ ω1 is an
ordinal not bijectable with any α ≤ ω1 and is denoted by ω2. And so on.

A limit ordinal α is called regular if there is no function f : β → α with β < α
and range(f) unbounded in α. Otherwise, α is called singular. The cofinality of
α (denoted by cof(α)) is the least β ≤ α for which there exists f : β → α with
range cofinal, i.e., unbounded, in α. Thus, α is regular if and only if cof(α) = α.
Notice that cof(α) is a regular ordinal, for every limit ordinal α.

All the ordinals ω, ω1, ω2, . . . are regular. The limit of all these, that is,
⋃
n ωn,

is a singular ordinal, denoted by ωω.
By the Well-Ordering Principle, every set can be well-ordered. And every

well-ordered set X is order-isomorphic to a unique ordinal, denoted by otp(X),
the order-type of X.

5. The universe of all sets

In ZFC, one can prove that the universe of all sets V forms a cumulative
hierarchy. That is, every set belongs to some Vα, for some ordinal α, where the
Vα are defined as follows:
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V0 = ∅

Vα+1 = P(Vα), the power set of Vα.

Vλ =
⋃
α<λ Vα, if λ is a limit ordinal.

Then, V =
⋃
α∈Ω Vα is the universe of all sets.

Notice that α ≤ β implies Vα ⊆ Vβ.
One can easily see, by transfinite induction on the ordinals α, that all the Vα

are transitive sets.

6. Cardinals

A cardinal number (or simply, a cardinal) is an ordinal that is not bijectable
with any smaller ordinal. Thus, all natural numbers are cardinals, and so are ω,
ω1, ω2, . . . , ωω, . . .

Every infinite cardinal is a limit ordinal.
We normally use Greek letters κ, λ, µ, ν, . . . to denote infinite cardinals.
Given an infinite cardinal κ, the set of all ordinals that are bijectable with

some λ ≤ κ is a cardinal; it is the least cardinal greater than κ, and is usually
denoted by κ+. Moreover, if X is a set of cardinals, then

⋃
X is also a cardinal.

Hence, the cardinals form a proper class contained in Ω. The transfinite sequence
of all infinite cardinals is denoted, following Cantor, by the Hebrew letter ℵ
(aleph) sub-indexed by ordinals. Thus,

ℵ0,ℵ1,ℵ2, . . . ,ℵω,ℵω+1, . . . ,ℵα, . . .

Notice that ℵn = ωn, for all n < ω.
The Well-Ordering Principle implies that every set has a cardinality, i.e., is

bijectable with a (unique) cardinal ℵα. The cardinal ℵα is called the cardinality
of X and is denoted by |X|.

Exercise 6.1.

(1) If α is a limit ordinal, then cof(ℵα) = cof(α).
(2) If κ is an infinite cardinal, then κ+ is regular.

6.1. Some cardinal arithmetic. Let κ, λ be cardinals.
The sum κ + λ is defined as |A ∪ B|, for some sets A and B with |A| = κ,

|B| = λ, and A ∩B = ∅. Equivalently, as |κ× {0} ∪ λ× {1}|.
The product κ · λ is defined as |κ× λ|.
The exponentiation is defined as κλ = |

∏
α<λ κ|, i.e., the cardinality of the

product of λ-many copies of κ. Equivalently, the cardinality of the set of all
functions from λ into κ.
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Since for every infinite cardinal κ the canonical pairing function on the ordi-
nals (see [1]) is a bijection between κ × κ and κ, it follows that κ · κ = κ, and
therefore for all infinite cardinals κ and λ,

κ+ λ = κ · λ = max{κ, λ}.
So the sum and product of infinite cardinals is trivial. However, the exponenti-
ation is, in contrast, highly non-trivial. Indeed, even the value of 2ℵ0 cannot be
decided in ZFC.

If 2 ≤ κ ≤ λ, then κλ = 2λ, because 2λ ≤ κλ ≤ (2κ)λ = 2κ·λ = 2λ.
Cantor’s Theorem states that |A| > |P(A)|, for every set A. Hence, 2κ > κ,

for every cardinal κ.
Another result one can prove in ZFC about infinite cardinal exponentiation

is that κcof(κ) > κ, for every infinite cardinal κ.
But, unfortunately, this is about all one can prove in ZFC in such a generality

about cardinal exponentiation, assuming of course that ZFC is consistent.

7. Models, consistency, and independence

Since ZFC is a recursive axiom system in which arithmetic is formalizable, it is
subject to Gödel’s Second Incompleteness Theorem. Namely, if ZFC is consistent,
i.e., no contradiction can be logically derived from it, then ZFC cannot prove its
own consistency. However, we do believe ZFC is consistent, since all ZFC axioms
are true in V .

A structure for the language of set theory is a pair 〈M,E〉, where M is a set
or a proper class and E is a binary relation on M . We say that 〈M,E〉 is a model
of ZFC if all ZFC axioms are true in 〈M,E〉 whenever we interpret the variables
as ranging over elements of M and we interpret ∈ as E. We sometimes consider
also models of fragments of ZFC.

Exercise 7.1. Show that the pair 〈ω,E〉, where E is the relation given by:
mEn iff the m-th digit (counting from right to left) in the binary expansion
of n is 1, is a model of ZFC minus Infinity. In fact, 〈ω,E〉 and 〈Vω,∈〉 are
isomorphic.

By Gödel’s Completeness Theorem for first-order logic, ZFC has a model if
and only if it is consistent. Hence, by Gödel’s Second Incompleteness Theorem,
if ZFC is consistent, then one cannot prove in ZFC that there exists a model of
ZFC.

A model 〈M,E〉 is called standard if E is ∈, that is, the membership relation
between sets. Namely, E =∈ ∩(M ×M). If 〈M,E〉 is standard, then we usually
write ∈ instead of E, or we just write M instead of 〈M,E〉. Thus, V is a standard
proper class model of ZFC.

The main reason for building models of ZFC of various sorts is to prove consis-
tency and independence results in mathematics. For suppose ϕ is a mathematical
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statement. Since virtually every mathematical statement can, in principle, be
translated into the language of set theory, we may assume ϕ is in fact a sentence
in that language. Now suppose we can build a model of ZFC (or of an arbitrar-
ily large finite fragment of ZFC) where ϕ holds. Then the negation of ϕ is not
provable in ZFC. The reason is that in any purported proof of the negation of ϕ
only a finite number of axioms of ZFC would be used, but then in every model
of those axioms ϕ would be false. Similarly, if we can build a model of ZFC (or
of an arbitrarily large finite fragment of ZFC) in which the negation of ϕ holds,
then ϕ is not provable in ZFC.

Thus, considering that being formally provable in ZFC is a widely accepted
proper mathematical rendition of being provable using the methods usually avail-
able in mathematics, it is clear that building models of (fragments of) ZFC where
a given mathematical statement holds is of great interest, for it provides a mathe-
matical proof that the statement cannot be refuted using the usual mathematical
tools.

A sentence ϕ is said to be independent of ZFC if neither ϕ not its negation
are provable in ZFC. Equivalently, if there exist two models of ZFC, one that
satisfies ϕ and and one that satisfies its negation.

The most famous example of independence of ZFC is Cantor’s Continuum
Hypothesis (CH). Georg Cantor formulated in 1874 the hypothesis that every
infinite set of real numbers is either countable (i.e., it can be put into a one-
to-one correspondence with the natural numbers) or it has the same cardinality
as R (i.e., it can be put into one-to-one correspondence with the real numbers).
This is equivalent to saying that the cardinality of R is ℵ1, and also equivalent
to 2ℵ0 = ℵ1.

The CH was Hilbert’s number one problem in his famous list of unsolved
mathematical problems he presented at the second International Congress of
Mathematicians, held in Paris in 1900. In spite of many attemps by Cantor
himself and others to prove CH, it was not until 60 years later, in 1938, that Gödel
was able to construct his model L, the universe of constructible sets, and proved
that CH holds in it, thereby showing that CH is consistent with ZFC. Further, in
1963, Paul Cohen invented a new revolutionary and extremely powerful method
for expanding a given model of ZFC, called forcing, and used it to obtain models of
ZFC in which CH fails, thereby showing that the negation of CH is also consistent
with ZFC.

The Generalized Continuum Hypothesis (GCH) states that 2ℵα = ℵα+1, for
all α ∈ Ω. The GCH is also independent of ZFC.

7.1. Consistency strength. If ϕ is a sentence of the language of set theory,
let CON(ϕ) be the Π1 arithmetical formula that asserts that there is no proof of
¬ϕ from ZFC. Notice that ZFC, being a recursive set, has a ∆1 definition (i.e.,
both a Σ1 definition and a Π1 definition) in 〈ω,+, ·, 0, 1〉.
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By the completeness theorem for first-order logic,

ZFC ` (〈ω,+, ·, 0, 1〉 |= CON(ϕ)↔ ∃M(M |= ZFC + ϕ)).

Let ϕ and ψ be sentences of the language of set theory. We say that ϕ has
higher consistency strength than ψ (modulo ZFC), or that ϕ is consistency-wise
stronger than ψ (modulo ZFC) if

ZFC ` (CON(ϕ)→ CON(ψ))

but
ZFC 6` (CON(ψ)→ CON(ϕ)).

Equivalently,

ZFC ` (∃M(M |= ZFC + ϕ)→ ∃M(M |= ZFC + ψ))

but
ZFC 6` (∃M(M |= ZFC + ψ)→ ∃M(M |= ZFC + ϕ)).

We say that ϕ and ψ have the same consistency strength (modulo ZFC), or that
ϕ and ψ are equiconsistent (modulo ZFC) if

ZFC ` (CON(ϕ)↔ CON(ψ)).

Equivalently,

ZFC ` (∃M(M |= ZFC + ϕ)↔ ∃M(M |= ZFC + ψ)).

Of course, equivalence (modulo ZFC) implies equiconsistency (modulo ZFC).

8. The Mostowski collapse

A binary relation E on a set or a proper class X is well-founded if the following
two conditions hold:

(1) There is no infinite descending E-chain

. . . an+1Ean . . . a2Ea1Ea0.

Equivalently, every non-empty subset of X has an E-minimal element.
(2) For every x ∈ X, the collection of all y ∈ X such that yEx is a set.

(This, of course, holds automatically if X itself is a set.)

If E is a well-founded relation on a set (or a proper class) X, then the rank
function

(1) ρ(x) = sup{ρ(y) + 1 : yEx}
maps X onto an ordinal, or onto Ω if X is a proper class, and is order-preserving,
i.e., xEy implies ρ(x) < ρ(y). To see this, let X0 = ∅ and let Xα+1 = Xα ∪ {x ∈
X : ∀y(yEx → y ∈ Xα}. For λ a limit ordinal, let Xλ =

⋃
α<λXα. Notice that

the Xα form an increasing chain, i.e., α < β implies Xα ⊆ Xβ. Now one can
easily check that ρ(x) is the least α such that x ∈ Xα+1. Hence, by Replacement
there is γ such that Xγ = Xγ+1, in which case Xγ = X (or XΩ = X if X is a
proper class).
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The function ρ is the unique function satisfying equation 1 above, that is, if ρ′

is another such function, then ρ = ρ′. Otherwise, let α be the least ordinal such
that the set {x ∈ Xα : ρ(x) 6= ρ′(x)} is non-empty, and let x be an E-minimal
element in this set. By minimality of α and x, we have ρ(y) = ρ′(y), for all yEx.
But then we must have ρ(x) = ρ′(x), which is impossible.

For each x ∈ X, ρ(x) is called the rank (E-rank) of x.
Suppose E is a well-founded relation on X. We call a subset x of X E-

transitive if for every y ∈ x, if zEy, then z ∈ x.

Theorem 8.1 (Transfinite recursion on well-founded relations). Suppose E
is a well-founded relation on a class X. If G is a class function defined on V ,
then there is a unique class function F on X such that

F (x) = G(x, F � {z : zEx}).

Proof. (Sketch) Define F as follows:
F (x) = y if and only if there is a function f with domain an E-transitive set

containing x such that for every z in the domain of f , f(z) = G(z, f � {t : tEz})
and f(x) = y.

By induction on α ≥ 1 one can check that F is defined for all x ∈ Xα.
Uniqueness follows by considering another such F ′, looking at the least α

such that the set {x ∈ Xα : F (x) 6= F ′(x)} is non-empty, and then taking
an E-minimal element x in this set. It follows that F (x) = F ′(x), yielding a
contradiction. �

A model 〈M,E〉 is called well-founded if E is well-founded on M .

Theorem 8.2 (Mostowski Collapse). If 〈M,E〉 is a well-founded model of
the axiom of Extensionality, then there is a unique transitive model 〈N,∈〉 (called
the transitive, or Mostowski, collapse of 〈M,E〉) and a unique isomorphism π :
〈M,E〉 → 〈N,∈〉.

Proof. Let π(x) = {π(z) : zEx}. Clearly, aEb implies π(a) ∈ π(b). So we
only need to check that π(a) exists for every a ∈ M , and that π is one-to-one.
Then we can take N to be the range of π.

Existence is guaranteed by Theorem 8.1 above. Indeed, consider the function
G such that for each function f with domain an E-transitive set containing x,
assigns to the pair (x, f � {z : zEx}) the set {f(z) : zEx}. Then π(x) = G(x, π �
{z : zEx}).

We can see that π is one-to-one by induction on the E-rank ρ of the elements
of M . Since M is a model of Extensionality, there is only one element a of M
having E-rank 1, and then π(a) = ∅. Now suppose a, b ∈ M and a 6= b. Since
M satisfies Extensionality, we can find, say, some cEa such that ¬cEb. Hence,
π(c) ∈ π(a). We claim that π(c) 6∈ π(b), and therefore π(a) 6= π(b). Otherwise,
there is dEb with π(c) = π(d). But since c, d are of lower rank than b, and they
are different, by inductive hypothesis we have π(c) 6= π(d). �
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The following is a typical application of the Mostowski collapse. Suppose
〈X,∈〉 is a model of a fragment T of ZFC. By the Löwenheim-Skolem Theorem, let
〈M,∈〉 be a countable elementary substructure of 〈X,∈〉. Apply the Mostowski
collapse to 〈M,∈〉 to obtain a countable transitive model 〈N,∈〉 isomorphic to
〈M,∈〉. Then we have that 〈N,∈〉 is a model of T .

It follows that for every finite fragment T of ZFC there is a countable transitive
model of the form 〈N,∈〉 that satisfies T .

9. Filters

Recall the notions of filter on a set.

Definition 9.1. A filter on a non-empty set A is a set F of subsets of A
such that:

(1) A ∈ F and ∅ 6∈ F .
(2) If X, Y ∈ F , then A ∩B ∈ F .
(3) If X ∈ F and X ⊆ Y ⊆ A, then Y ∈ F .

If F is a filter on A, then {A−X : X ∈ F} is an ideal on A, called the dual
ideal of F .

9.1. The filter of closed unbounded sets. A subset C of an infinite or-
dinal α is unbounded if for every β < α there is γ ∈ C greater than β. And C
is closed if the supremum of every increasing sequence of elements of C belongs
to C, provided this supremum is < α. Thus, C is closed if and only if for every
limit ordinal β < α, if C ∩ β is unbounded in β, then β ∈ C. We say that C is a
club subset of α if it is closed and unbounded.

If κ is an uncountable cardinal, then the set of limit ordinals smaller than κ is
club And if λ is a limit cardinal, then the set of cardinals smaller than λ is club.

Proposition 9.2. If α is an infinite ordinal of uncountable cofinality, then
the set Club(α) := {X ⊆ α : C ⊆ X, for some club C} is a filter, called the club
filter on α.

Proof. We only need to check that the intersection of any two sets in Club(α)
is in Club(α). This follows immediately from the fact that the intersection of
any two club sets is club. For suppose C and D are club. Given β < α, pick
alternatively γ2n ∈ C and γ2n+1 ∈ D so that

β < γ0 < γ1 < . . . < γ2n < γ2n+1 < . . .

Then, sup{γ2n : n < ω} = sup{γ2n+1 : n < ω} ∈ C ∩ D, because C and D are
closed and α has uncountable cofinality. This shows C ∩D is unbounded. That
C ∩ D is also closed follows immediately from the fact that both C and D are
closed. �

Theorem 9.3. If κ is a regular uncountable cardinal, then Club(κ) is κ-
complete, i.e., the intersection of less than κ-many club sets is club.
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Proof. Let 〈Cα : α < λ〉, with λ < κ, be a sequence of club sets subsets of
κ. We will prove that

⋂
α<λCα is club by induction on λ.

We already saw that the intersection of two club sets is club. So we only
need to consider the case λ is a limit and assume that the intersection of every
sequence of length less than λ of club sets is club.

By taking
⋂
β≤αCβ instead of Cα, we may assume that the sequence of Cα’s

is decreasing, i.e., Cβ ⊇ Cα whenever β ≤ α.
Let C =

⋂
α<λCα. Clearly C is closed, since so are all the Cα’s. Thus we

only need to check that C is unbounded. So fix β < κ. Now define a sequence
〈βα : α < λ〉 as follows: β0 = β; βα+1 is the least ordinal in Cα greater than βα
(this is possible because Cα is unbounded); and if α is a limit, then take βα to
be the least ordinal in Cα greater than sup{βγ : γ < α} (this is possible because
κ is regular). Then sup{βα : α < λ} ∈ C. �

Of course, it is not the case that the intersection of κ-many club sets is club.
But the diagonal intersection is. Let κ be a regular uncountable cardinal. Given
a sequence 〈Xα : α < κ〉 of subsets of κ, the diagonal intersection ∆α<κXα is
defined as the set {α < κ : α ∈

⋂
β<αXβ}.

Proposition 9.4. If κ is a regular uncountable cardinal and 〈Cα : α < κ〉 is
a sequence of club subsets of κ, then ∆α<κCα is club.

Proof. Notice first that we may replace Cα by Dα :=
⋂
β≤αCβ, because

∆α<κCα = ∆α<κDα. By Theorem 9.3 all the Dα are club. Note that the sequence
of the Dα is decreasing, i.e., Dα ⊇ Dβ for all α < β < κ.

Now let C = ∆α<κDα and let us show that C is club. Suppose first that
α < κ is a limit point of C. If β < α, then every γ ∈ C such that β ≤ γ < α
belongs to Dβ. Hence since Dβ is closed, α ∈ Dβ. Therefore, α ∈ C.

To see that C is unbounded, fix α < κ. Construct a sequence {βn : n < ω} as
follows. Let β0 ∈ D0 be greater than α. Given βn, pick βn+1 > βn in Dβn . Then
let β be the limit of the βn. We claim that β ∈ C. For this it is enough to see
that β ∈ Dγ for all γ < β. If γ < β, let n be such that γ < βn. But each βm, for
m > n, belongs to Dβn , and so β ∈ Dβn ⊆ Dγ. �

10. Stationary sets

The dual of the club filter on a cardinal κ of uncountable cofinality is the
ideal NSκ of non-stationary sets.

A subset S of κ is called stationary if it intersects all club subsets of κ. Thus,
every club set is stationary. Moreover, if S is stationary and C is club, then S∩C
is stationary.

By duality, it follows from Proposition 9.3 that if κ is regular and uncountable,
then NSκ is κ-complete, that is, the union of less than κ-many non-stationary
sets is non-stationary.

There are many stationary sets that are not club.
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Proposition 10.1. If λ < cof(κ) is a regular cardinal, then the set Eκ
λ :=

{α < κ : cof(α) = λ} is stationary.

Proof. Let C be a club subset of κ. Since λ < cof(κ), the λ-th element α
of C is less than κ, and since λ is regular α has cofinality λ. �

Thus, for example, the set Eω2
ω is a stationary subset of ω2 that is not closed.

However, Eω1
ω is closed, for it is the set of all countable limit ordinals. Notice

that Eω2
ω and Eω2

ω1
are disjoint not-closed stationary subsets of ω2.

A function f on a set of ordinals A is called regressive if f(α) < α for every
α ∈ A, α > 0.

The following theorem is known as the Pressing-Down Lemma, and also as
Fodor’s Lemma.

Theorem 10.2. Let κ be a regular uncountable cardinal, and let S ⊆ κ be
stationary. If f : S → κ is regressive, then there is a stationary S ′ ⊆ S on which
f is constant.

Proof. Suppose, towards a contradiction, that for every α < κ, the set
{β ∈ S : f(β) = α} is not stationary. So let Cα ⊆ κ be club and disjoint form
the set. Thus, f(β) 6= α for every β ∈ S ∩ Cα. Now let C = ∆α<κCα. Then
S ∩ C is stationary and if β ∈ S ∩ C, then f(β) 6= α for all α < β, contradicting
the fact that f is regressive on S. �

Theorem 10.3 (R. Solovay, 1971). If κ is a regular uncountable cardinal,
then κ can be partitioned into κ-many disjoint stationary sets.

Proof. If κ is a regular limit cardinal, then there are κ-many regular car-
dinals smaller than κ. By Proposition 10.1, the sets Eκ

λ , for regular λ < κ, are
stationary and pairwise-disjoint.

So assume κ = λ+, for some λ. For each α < κ, let fα be a one-to-one function
from α into λ. Now for each β < κ and each γ < λ, let

Xγ
β = {α > β : fα(β) = γ}.

If β 6= β′, then Xγ
β ∩X

γ
β′ = ∅, because the fα’s are one-to-one. Moreover, for each

β < κ, ⋃
γ<λ

Xγ
β = {α : β < α < κ}.

Since NSκ is κ-complete, at least one of the Xγ
β ’s is stationary. So for each β < κ,

let g(β) be such that X
g(β)
β is stationary. Since g : κ→ λ, and κ is regular, there

is γ such that X := {β : g(β) = γ} has cardinality κ. Thus, {Xγ
β : β ∈ X} is a

family of pairwise-disjoint stationary sets, as required. �
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11. The Levy hierarchy of formulas

A formula in a first-order language that contains the language of set theory
is Σ0, or Π0, if has only bounded quantifiers ∀x ∈ y and ∃x ∈ y.

A formula is Σ1 if it is of the form

∃x0, . . . , xkϕ(x0, . . . , xk, y0, . . . , yl)

where ϕ(x0, . . . , xk, y0, . . . , yl) is Π0.
A formula is Π1 if it is of the form

∀x0, . . . , xkϕ(x0, . . . , xk, y0, . . . , yl)

where ϕ(x0, . . . , xk, y0, . . . , yl) is Σ0.
In general, a formula is Σn, n > 1 if it is of the form

∃x0, . . . , xkϕ(x0, . . . , xk, y0, . . . , yl)

where ϕ(x0, . . . , xk, y0, . . . , yl) is Πn−1.
And a formula is Πn, n > 1, if it is of the form

∀x0, . . . , xkϕ(x0, . . . , xk, y0, . . . , yl)

where ϕ(x0, . . . , xk, y0, . . . , yl) is Σn−1.

Σ1 formulas are upwards absolute for transitive sets or classes. That is, if
M ⊆ N are transitive, ϕ(x) is a Σ1 formula, and a ∈M is such that ϕ(a) is true
in M , written M |= ϕ(a), then N |= ϕ(a). (Exercise.) Similarly, Π1 formulas are
downwards absolute for transitive sets or classes, that is, if ϕ(x) is Π1, a ∈ M ,
and N |= ϕ(a), then M |= ϕ(a).

If in a formula ϕ(x0, . . . , xk), where x0, . . . , xk occur free, we fix the values
a0, . . . , ak of the variables x0 . . . , xk, then we say that ϕ(a0, . . . , ak) is a formula
with parameters a0, . . . , ak.

11.1. Truth definition. We assume we have some fixed primitive recursive
coding by natural numbers of the syntax of the language of set theory so that
the arithmetical predicates x codes a formula, x codes a sentence, x codes a
Σn-formula, etc. are ∆1-definable in ZFC. This means, e.g., that there is a Σ1

formula (and also a Π1 formula) ϕ(x) such that for every natural number n, if
n codes a formula, then ZFC ` ϕ(n), and if n does not code a formula, then
ZFC ` ¬ϕ(n). Therefore, assuming ZFC is consistent, n codes a formula iff
ZFC ` ϕ(n).

Notice, however, that we may assume that formulas themselves are sets, since
they are finite sequences of simbols of the language of set theory, which we may
assume they are, e.g., natural numbers, and therefore they are sets. Hence there
is no real need for coding, for if the set of variables of the language of set theory
is chosen to be, say, a recursive set of natural numbers, then the set of formulas
is ∆1 definable in ZFC. We shall write, e.g., ϕ(x̄) ∈ Σn to mean that ϕ(x̄) is a
Σn formula.



12. ELEMENTARY SUBSTRUCTURES AND THE LÖWENHEIM-SKOLEM THEOREM 18

It follows from Tarski’s theorem on the undefinability of truth that there is
no formula of the first-order language of set theory that defines truth in ZFC, or,
in fact, in any other theory that interprets primitive recursive arithmetic. i.e.,
there is no formula ϕ(x) such that for every natural number n, n codes a theorem
of ZFC iff ZFC ` ϕ(n). Indeed, if ϕ(x) were such a formula, let {ψk(x) : k < ω}
be a primitive recursive enumeration of all formulas with one free variable. Let
θ(x) be the formula x ∈ ω ∧ ¬ϕ(pψx(x)q), where for a formula ψ, pψq is Gödel’s
notation for the code of ψ. Let k be such that θ(x) = ψk and let σ be θ(k). Then,
σ iff θ(k) iff ¬ϕ(pψk(k)q) iff ¬ϕ(pσq). Thus, we have that σ is a theorem of ZFC
iff ZFC ` ¬ϕ(pσq).

However, there is a ∆1-definition of truth for Σ0 sentences, namely, let |=0 be
the binary relation |=0 (ψ(x̄), ā) iff

(∗) ψ(x̄) is a Σ0 formula with k free variables, ā is a k-tuple and there exists
M transitive such that ā ∈M and M |= ψ(ā).

Since Σ0 sentences are absolute for transitive sets, we also have |=0 (ψ(x̄), ā) iff

(∗∗) ψ(x̄) is a Σ0 formula with k free variables, ā is a k-tuple and for all M
transitive such that ā ∈M , M |= ψ(ā).

Thus, since the satisfaction relation for sets Sat(M,ψ(x̄), ā) (i.e., Sat(M,ψ(x̄), ā)
iff ψ(x̄) is a formula with k free variables, ā is a k-tuple of elements of M and
M |= ψ(ā)) is ∆1, (∗) is Σ1 and (∗∗) is Π1. Hence, |=0 is ∆1.

For every Σ0 formula ψ(x̄), the following is provable in ZFC:

∀ā(ψ(ā)↔|=0 (ψ(x̄), ā)).

In particular, for every natural number n that codes a Σ0 sentence ψ we have
that n codes a theorem of ZFC iff ZFC `|=0 (ψ, ∅).

Moreover, for every natural number n ≥ 1, there is a Σn-definition of truth
for Σn sentences, namely: |=n (ϕ(x̄), ā) iff

ϕ(x̄) is a Σn formula with k free variables, ϕ(x̄) = ∃yn∀yn−1....Q1y1ψ(x̄, ȳ),
where ψ(x̄, ȳ) is a restricted formula , ā is a k-tuple and
∃yn∀y−1....Q1y1 |=0 (ψ(x̄, ȳ), k + n, ā_〈yn, yn+1, ..., y1〉)

where Q is ∃ if n is odd and ∀ if n is even.
We usually write |=n ϕ(ā) instead of |=n (ϕ(x̄), ā).
So, for every Σn formula ψ(x̄), the following is provable in ZFC:

∀ā(ϕ(ā)↔|=n ϕ(ā)).

In particular, for every natural number n that codes a Σn sentence ψ we have
that n codes a theorem of ZFC iff ZFC `|=n ψ.

12. Elementary substructures and the Löwenheim-Skolem Theorem

We will sometimes consider the language of set theory enriched with additional
relation, function, or constant symbols, as well as the corresponding structures
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for these languages. E.g., structures of the form 〈M,∈, A, a〉, where A is a subset
of M and a ∈M .

Given any two structures M ⊆ N in a given language, we write M ≺n N if
M is a Σn-elementary substructure of N , i.e., for every Σn formula ϕ(x0, . . . , xk)
and every a0, . . . , ak ∈M ,

M |= ϕ(a0, . . . , ak) if and only if N |= ϕ(a0, . . . , ak).

M is an elementary substructure of N , written M ≺ N , if M ≺n N for all n.
Thus, if M ≺ N , M and N satisfy the same sentences.

The Löwenheim-Skolem Theorem for first-order logic asserts that for every
infinite cardinal κ, every structure M for a countable language, and every X ⊆M
of cardinality κ, there is an elementary substructure N of M with X ⊆ N and
such that N has cardinality κ. In particular, every infinite structure M for a
countable language has a countable elementary substructure. The structure N ,
called the Skolem Hull of X is obtained by closing X under a family of Skolem
functions, one for each existential formula. More precisely, for each existential
formula ∃xϕ(x, y1, . . . , yn), one has a function f : Mn → M that assigns to each
n-tuple 〈a1, . . . , an〉 a witness to the sentence ∃xϕ(x, a1, . . . , an), whenever the
sentence holds in M , and some fixed element of M otherwise. Every well-ordering
of M gives rise to a family of definable Skolem functions, namely, f(a1, . . . , an)
is defined as the least witness to ∃xϕ(x, a1, . . . , an) under the well-ordering.



Lecture I

13. The Reflection Theorem

For every natural number n, the following is a theorem of ZFC.

Theorem 13.1. There is a club class Cn of cardinals such that for every
κ ∈ Cn,

Vκ ≺n V
i.e., for all κ ∈ Cn, all ā ∈ Vκ and all ϕ(x̄) ∈ Σn,

Sat(Vκ, ϕ(x̄), ā) iff |=n ϕ(ā)

Proof. For n = 0 this is clear, since we may take C0 to be the class of all
cardinals.

Suppose now we have proved the Theorem for n, and so we have Cn.
Given α ∈ Cn, let f(α) ∈ Cn be the least cardinal such that for every formula

∃xϕ(x, x1, ..., xk), where ϕ is Πn, and every a1, ..., ak in Vα, if ∃xϕ(x, a1, ..., ak),
then ϕ(b, a1, ..., ak) for some b ∈ Vf(α). For each n < ω, let fn(α) be the n-iterate
of f at α. Let F (α) be the limit of all fn(α), n < ω. Note that since f is
continuous, F (α) is a cardinal. Then Cn+1 = {F (α) : α ∈ Cn} is as required. �

Notice that for every ordinal α we have Vα ≺0 V .

Exercise 13.2. If Vα ≺1 V , then α must be an uncountable cardinal.

One may naturally wonder whether there can be a regular cardinal κ such
that Vκ ≺1 V . This leads us to the first of the large cardinals.

14. Inaccessible cardinals

A cardinal κ is called (strongly) inaccessible if it is uncountable, regular, and
a strong limit, i.e., for every cardinal λ < κ, 2λ < κ.

If κ is inaccessible, then |Vκ| = κ and κ = ℵκ.
We shall see next that κ is inaccessible if and only if it is regular and Vκ is a

model of ZFC. It follows, by Gödel’s Second Incompleteness Theorem, that one
cannot prove in ZFC that inaccessible cardinals exist.

Theorem 14.1. The following are equivalent for a regular cardinal κ:

(1) κ is inaccessible.
(2) Vκ |= ZFC.

20
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(3) Vκ ≺1 V , i.e., Vκ is a Σ1-elementary substructure of V .

Proof. (1) implies (2): Let us check that Vκ satisfies Replacement. So,
suppose F is a class function in Vκ whose domain is an element of Vκ. Thus, F
has cardinality less than κ, and since κ is regular, F is not cofinal in Vκ and so
it is contained in some Vα, α < κ. But then the range of F belongs to Vα+1.

(2) implies (3): Let ∃xψ(x, a) be a Σ1 sentence, with parameter a ∈ Vκ, and
suppose ∃xψ(x, a) holds. Notice that since Vκ |= ZFC, |TC(a)| < κ. Let b be
a witness to ∃xψ(x, a) and let λ be a regular cardinal greater than κ such that
b ∈ Vλ. Let N be an elementary substructure of Vλ with b ∈ N , TC({a}) ⊆ N
and has cardinality < κ. Let M be the Mostowski collapse of N . Let c be the
collapse of b. Since a collapses to itself, M |= ψ(c, a). Hence, since Σ1 sentences
are upwards-absolute for transitive models, Vκ |= ∃xψ(x, a).

(3) implies (1): We check that κ is strong limit. So, suppose λ is a cardinal
less than κ. Then, ∃α∃f(f : α → Vλ+1 is onto). But this is a Σ1 sentence with
Vλ+1 as a parameter and so it holds in Vκ. �

Theorem 14.2 (Levy, 1960). A cardinal κ is inaccessible if and only if for
every A ⊆ Vκ there is a λ < κ (equivalently, a club set of λs) such that

〈Vλ,∈, A ∩ Vλ〉 ≺ 〈Vκ,∈, A〉.

Proof. Suppose κ is inaccessible and let A ⊆ Vκ. Build a chain of elementary
substructures of 〈Vκ,∈, A〉, each structure in the chain of size < κ, so that the
union of the chain is of the form 〈Vλ,∈, A ∩ Vλ〉, some λ < κ.

For the other direction, suppose κ is singular. Let A be a function whose
domain is some µ < κ and whose range is cofinal on κ. Let λ > µ be such that
〈Vλ,∈, A ∩ Vλ〉 ≺ 〈Vκ,∈, A〉. Then, the range of A is contained in λ, which is
impossible. That κ is a strong limit is shown by a similar argument. �

15. Mahlo cardinals

If κ is inaccessible, then the set C of all strong limit cardinals smaller than κ
is club (Exercise). So if κ is the least inaccessible cardinal, then all cardinals in
C must be singular, for otherwise there would be an inaccessible cardinal below
κ.

An inaccessible cardinal κ is called Mahlo (after the German mathematician
Paul Mahlo, 1883-1971) if the set of inaccessible cardinals smaller than κ is
stationary. Thus κ is Mahlo if and only if it is inaccessible and every club subset
of κ contains an inaccessible cardinal. Therefore the first Mahlo cardinal, if it
exists, is much greater than the first inaccessible cardinal.

One cannot prove from ZFC plus the existence of an inaccessible cardinal
that a Mahlo cardinal exists. For suppose κ < λ are the first two inaccessible
cardinals. Then Vλ is a model of ZFC which satisfies “There exists an inaccessible
cardinal” plus “There is no Mahlo cardinal”.
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Exercise 15.1. Show that if κ is Mahlo, then the set of inaccessible cardinals
smaller than κ that are themselves limits of inaccessible cardinals is stationary.

Theorem 15.2 (Levy, 1960). A cardinal κ is Mahlo if and only if for every
A ⊆ Vκ there is a regular (equivalently, an inaccessible) cardinal λ < κ (equiva-
lently, a stationary set of λs) such that

〈Vλ,∈, A ∩ Vλ〉 ≺ 〈Vκ,∈, A〉.

Proof. Similarly as in 14.2. For the if direction, suppose C is a club subset
of κ. Let λ < κ, λ inaccessible, be such that

〈Vλ,∈, C ∩ Vλ〉 ≺ 〈Vκ,∈, C〉.
Then C is unbounded in λ. Hence, λ ∈ C. �

Thus, if κ is Mahlo, then for every n there is a club C ⊂ κ such that Vα ≺n Vκ,
for all α ∈ C.

16. Indescribable and weakly-compact cardinals

Pushing the reflection principles a bit further, we can ask: Why should we
restrict to first-order logic?

In second-order logic we have two kinds of variables: first-order variables
x, y, z, . . ., and second-order variables X, Y, Z . . ., which may also be quantified.
We also have predicates X(x). Second-order variables are interpreted in a given
structure 〈M, . . .〉 as subsets of M , and the predicates X(x) are interpreted as
x ∈ X.

A second order formula is called Σ1
0 (or Π1

0) if its quantifiers range only over
variables of first order, but it may have free variables of second order.

A formula is Σ1
1 if it is of the form

∃X0, . . . , Xkϕ(X0, . . . , Xk, Y0, . . . , Yl)

where ϕ(X0, . . . , Xk, Y0, . . . , Yl) is Σ1
0.

A formula is Π1
1 if it is of the form

∀X0, . . . , Xkϕ(X0, . . . , Xk, Y0, . . . , Yl)

where ϕ(X0, . . . , Xk, Y0, . . . , Yl) is Σ1
0.

Notice that, by Proposition 14.2, κ is inaccessible iff for every A ⊆ Vκ and
every Σ1

0 sentence ϕ in the language of set theory with one additional predicate
symbol for A, if 〈Vκ,∈, A〉 |= ϕ, then for some λ < κ, 〈Vλ,∈, A ∩ Vλ〉 |= ϕ.

We say that κ is Σ1
1-indescribable (Π1

1-indescribable) if for every A ⊆ Vκ
and every Σ1

1 (Π1
1) sentence ϕ in the language of set theory with one additional

predicate symbol for A, if 〈Vκ,∈, A〉 |= ϕ, then there is λ < κ such that 〈Vλ,∈
, A ∩ Vλ〉 |= ϕ.

We have the following characterization of inaccessibility.



16. INDESCRIBABLE AND WEAKLY-COMPACT CARDINALS 23

Exercise 16.1. κ is Σ1
1-indescribable iff it is inaccessible.

However, Π1
1-indescribability leads to the next large-cardinal notion.

16.1. Weakly-compact cardinals. Weakly-compact cardinals were stud-
ied by Paul Erdös and Alfred Tarski in the context of the partition calculus.
Namely, κ is weakly-compact if κ is an uncountable cardinal and satisfies κ→ (κ)2,
i.e., for every coloring of all pairs of elements of κ with two colors, there is a subset
X of κ of cardinality κ such that every pair of elements of X has the same color.
Thus, weak-compactness generalizes Ramsey’s theorem to the uncountable.

We shall give next a characterization of weakly-compact cardinals in terms of
trees.

Recall that a tree T = 〈T,≤〉 is a partially ordered set (poset) such that for
every t ∈ T , the set {s ∈ T : s < t} is well-ordered by ≤.

The elements of T are usually called nodes.
The level α of T consists of all nodes t such that the set {s ∈ T : s < t} has

order-type α.
The height of T is the least ordinal α such that the α-th level of T is empty.
A branch in T is a maximal linearly-ordered subset of T .

Proposition 16.2 (König’s Lemma. D. König, 1927). Every infinite tree
whose levels are all finite has an infinite branch.

Proof. Pick t0 in level 0 such that the set {s : t0 < s} is infinite. Such a t0
exists, for otherwise the level 0 would be infinite. Given tn in level n such that
the set {s : tn < s} is infinite, pick tn+1 in level n + 1 such that tn ≤ tn+1 and
such that {s : tn+1 < s} is infinite. Again, this is possible because otherwise the
n+ 1-th level would be infinite. And so on. Then the set {tn : n < ω} is linearly
ordered and infinite, hence contained in an infinite branch. �

Is the same true for uncountable trees? That is, is it true that every uncount-
able tree whose levels are all countable has an uncountable branch?

An Aronszajn κ-tree is a tree of height κ with levels of size < κ and with no
branch of size κ.

Exercise 16.3. Show that if κ is a singular cardinal, then there is an Aron-
szajn κ-tree. (Hint: Let {αξ : ξ < λ}, λ < κ, be a sequence cofinal on κ and
consider the tree consisting on the disjoint union of the αξ, ξ < λ, each with the
ordinal ordering.)

Lemma 16.4. If κ is weakly-compact, then κ is inaccessible.

Proof. Suppose κ =
⋃
{Xα : α < λ}, where all the Xα are pairwise disjoint,

λ < κ and |Xα| < κ, all α < λ. Let f be the coloring given by: f({β, γ}) = 1 iff
β and γ belong to the same Xα. Then f has no homogeneous set of size κ. This
shows κ is regular.
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To see that κ is a strong limit, suppose, towards a contradiction, that {gα :
α < κ} is a collection of functions from a fixed λ < κ into 2. Let f be the coloring
given by: f({α, β}) = 1 iff gα <lex gβ iff α < β, i.e. the lexicographic ordering
agrees with the ordering of the subindices. An f -homogeneous set produces an
increasing or a decreasing sequence under the lexicographic ordering. But it is
a general fact that there cannot be any such sequence of length λ+: for suppose
{hα : α < λ+} is an increasing sequence. Let γ ≤ λ be the least ordinal such that
{hα � γ : α < λ+} has size λ+. So, we may assume all the hα � γ are distinct. For
each α, let δα be the least ordinal where hα and hα+1 differ. Note that δα < γ.
So, we may assume all δα are the same, call it δ. But if hα � δ = hβ � δ, then
hβ <lex hα+1 and hα <lex hβ+1. Hence, α = β. Thus, {hα � δ : α < λ+} has size
λ+, contradicting the minimality of γ. �

The following is a useful characterization of weakly-compact cardinals.

Theorem 16.5. κ is weakly-compact iff it is inaccessible and there are no
Aronszajn κ-trees.

Proof. Suppose T is a tree of height κ with all levels of size < κ. We may
assume that T is a tree on κ. Extend <T to a linear-ordering ≺ as follows: if
α <T β, then α ≺ β, and if α and β are incomparable, then let α ≺ β iff in the
first level where they split, their predecessors at that level are <-ordered in the
same way. i.e., if γ is the first level of T where the branches leading to α and β
split, and if α0 and β0 are the predecessors of α and β, respectively, at level γ,
then α0 < β0. We Define F : [κ]2 → 2 by F ({α, β}) = 1 iff ≺ agrees with < on
{α, β}. By weak compactness let H ⊆ κ be homogeneous for F and of size κ.
Consider the set B of all α such that there are κ-many elements of H above α in
the tree ordering. Then B is a chain: For suppose α, β ∈ B are such that α ≺ β,
α 6<T β and β 6<T α. Pick α′ < β′ < γ in H such that α <T α

′, γ and β <T β
′.

Then, F ({α′, β′}) = 1, but F ({β′, γ}) = 0.
Now suppose κ is inaccessible and let F : [κ]2 → 2.
We construct the nodes of a tree T : let t0 = ∅. Suppose {tβ : β < α} have

already been constructed, where each tβ is a function from some γ ≤ β into 2. We
construct tα by induction on γ < α. Suppose tα � γ has already been constructed.
If tα � γ is not in {tβ : β < α}, then let tα = tα � γ. Otherwise, tα � γ = tβ, some
β < α. Then, let tα(γ) = F ({β, α}).

T is a tree of height κ and, since κ is inaccessible, all levels are of size < κ.
Hence, it has a chain B of size κ. For each i ∈ {0, 1}, let Hi = {α : tα ∈
B and t_α i ∈ B}. Each Hi is homogeneous for F , hence one of them must have
size κ. �

The last argument of the proof above can be easily adapted to show that if
κ is inaccessible and there are no Aronszajn κ-trees, then κ → (κ)n, for every
n < ω. Hence, κ→ (κ)2 iff κ→ (κ)n, for every n < ω.
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The following equivalence is now surprising, for it shows that two apparently
unrelated notions: a reflection principle and a partition property, are in fact
equivalent. It also gives a characterization of weakly-compact cardinals is terms
of elementary embeddings.

Theorem 16.6 (Hanf and Scott 1961; Keisler 1962). The following are equi-
valent for a cardinal κ:

(1) κ is Π1
1-indescribable.

(2) κ is weakly-compact.
(3) For every A ⊆ Vκ, there is a transitive set M with κ ∈ M and X ⊆ M

such that 〈Vκ,∈, A〉 ≺ 〈M,∈, X〉.

Proof. (1) implies (2): By Theorem 14.2, every Π1
1-indescribable cardinal is

inaccessible. So it will be enough to show that there are no κ-Aronszajn trees.
Towards a contradiction, suppose T is a κ-tree on κ. For every limit α < κ,
〈Vα,∈, T ∩ Vα〉 satisfies the Σ1

1 sentence that says “There is a branch of T of
unbounded length”. Hence, 〈Vκ,∈, T 〉 satisfies the same sentence.

(2) implies (3): Fix A ⊆ Vκ. By 14.2, C = {α < κ : 〈Vα,∈ A ∩ Vα〉 ≺ 〈Vκ,∈
A〉} is a club.

Fix a well-ordering of Vκ, so that whenever we take the Skolem hull of some
X ⊆ Vκ in 〈Vκ,∈, A〉 we do it with respect to this fixed well-ordering.

For every α ∈ C and every β with α < β < κ, let H(α, β) be the Skolem hull
of Vα ∪ {β} in 〈Vκ,∈, A〉.

Let H(α, β) ∼ H(α′, β′) iff α = α′ and H(α, β) and H(α′, β′) are isomorphic,
via an isomorphism that is the identity on Vα and sends β to β′. It is clear that
∼ is an equivalence relation. Note that, by inaccessibility of κ, for each α ∈ C
there is β such that [H(α, β)] has cardinality κ.

Let T be the set of all ∼-equivalence classes of cardinality κ ordered by:
[H(α, β)] <T [H(α′, β′)] iff α < α′, β ≤ β′ and the map j : Vα ∪{β} → Vα′ ∪{β′}
that is the identity on Vα and sends β to β′ extends to an elementary embedding
j : H(α, β)→ H(α′, β′). We claim that 〈T,<T 〉 is a tree.

<T is clearly well-founded. To see that below any node <T is a linear ordering,
suppose [H(α, β)], [H(α′, β′)] <T [H(α′′, β′′)], where α ≤ α′. Since each equiva-
lence class has cardinality κ, we may assume β ≤ β′. Let j : H(α, β)→ H(α′′, β′′)
and j′ : H(α′, β′) → H(α′′, β′′) be the corresponding elementay embeddings.
Then there is a unique map k : H(α′, β′) → H(α′′, β′′) such that j′ ◦ k = j,
witnessing [H(α, β)] <T [H(α′, β′)].

Since κ is inaccessible, T is a κ-tree. Thus, by weak compactness (Theorem
16.5), let 〈[H(α, βα)] : α < κ〉 be a branch through T . So, if α ≤ α′ < κ, we
have an elementary embedding iα,α′ : H(α, βα) → H(α′, βα′) that fixes Vα and
sends βα to βα′ . Moreover, if α ≤ α′ ≤ α′′ < κ, then iα,α′′ = iα′,α′′ ◦ iα,α′ . Let
N = 〈N,E, Y 〉 be the direct limit of 〈H(α, βα) : α < κ〉. Since κ has uncountable
cofinality, N is well-founded. Let 〈M,∈, X〉 be the transitive collapse of N . Then,
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〈Vκ,∈, A〉 ≺ 〈M,∈, X〉. Moreover, since [〈α, βα〉] = [〈α′, βα′〉], for all α, α′ < κ,
the transitive collapse of [〈α, βα〉] is ≥ κ, and so κ ∈M .

(3) implies (1): Let A ⊆ Vκ and suppose 〈Vκ,∈, A〉 |= ∀Zϕ(Z), where ∀Zϕ(Z)
is a Π1

1 sentence, with ϕ(Z) being first-order with Z as a second-order variable
predicate and which may have A as a parameter predicate. By (3), let 〈M,∈, X〉,
with M transitive and κ ∈ M be such that 〈Vκ,∈, A〉 ≺ 〈M,∈, X〉. Note that
V M
κ = Vκ and so Vκ ∈M . Moreover, A = X ∩ Vκ. Since ∀Zϕ(Z) is Π1

1,

〈M,∈, X〉 |= “〈Vκ,∈, A〉 |= ∀Zϕ(Z)”.

Hence,
〈M,∈, X〉 |= ∃α(〈Vα,∈, X ∩ Vα〉 |= ∀Zϕ(Z)).

But the right-hand side is a first-order sentence, hence by elementarity,

〈Vκ,∈, A〉 |= ∃α(〈Vα,∈, A ∩ Vα〉 |= ∀Zϕ(Z)).

Therefore, there is α < κ such that

〈Vα,∈, A ∩ Vα〉 |= ∀Zϕ(Z).

�

16.2. Stationary reflection.

Theorem 16.7 (Stationary Reflection). If κ is weakly compact, then for every
collection {Sα : α < κ} of stationary subsets of κ, there exists an inaccessible λ
such that Sα ∩ λ is stationary, for all α < λ.

Proof. Let A = {〈α, β〉 : β ∈ Sα}. Let F : Vκ → κ be such that if λ is a
cardinal, then F (λ) = 2λ, and if f is a function from some ordinal α into κ, then
F (f) = sup(range(f)). Such an F exists because κ is inaccessible.

The sentence: “Every Sα, α < κ, is stationary” can be expressed as a Π1
1

sentence over 〈Vκ,∈, A, F 〉. Indeed,

∀C∀α(C is club→ ∃β ∈ C(〈α, β〉 ∈ A)).

And the sentence : “For every function f : α → κ, F (f) exists” can also be
expressed as a Π1

1 sentence over 〈Vκ,∈, A, F 〉. Namely,

∀f(∃α(α ∈ OR ∧ dom(f) = α) ∧ range(f) ⊆ OR→ ∃βF (f) = β).

Since κ is Π1
1-indescribable, there exists λ < κ such that 〈Vλ,∈ A ∩ Vλ, F ∩ Vλ〉

satisfies
∀C∀α(C is club→ ∃β ∈ C(〈α, β〉 ∈ A ∩ Vλ))

and also

∀f(∃α(α ∈ OR ∧ dom(f) = α) ∧ range(f) ⊆ OR→ ∃βF ∩ Vλ(f) = β).

The first sentence implies that Sα ∩ λ is stationary in λ, for every α < λ. And
the second sentence that λ is regular. Finally, since Vλ is closed under F , λ must
be a strong limit cardinal. �
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Corollary 16.8. Every weakly-compact cardinal is Mahlo.

Proof. Let R be the set of regular cardinals below κ. Let C be a club subset
of κ. By 16.7, let λ ∈ R be such that C ∩ λ is stationary in λ. Then, λ ∈ C. �



Lecture II

17. Erdös cardinals

Another possible strengthening of κ → (κ)2, or rather its equivalent form:
for every n < ω, κ → (κ)n, would be to require the existence of sets that are
simultaneously homogeneous for all n < ω. Namely, for X a set, let [X]<ω be
the set of all finite subsets of X. For α an ordinal and κ a cardinal, the notation
κ → (α)<ω means that for every coloring of [κ]<ω into two colors, there is a
homogeneous set of order-type α, i.e., a subset X of κ of order-type α such that
for every n, all elements of [X]n have the same color. Notice that we cannot
require that all elements of [X]<ω have the same color, since, e.g., we could color
[κ]1 all green and [κ]2 all red.

If α ≥ ω, the α-Erdös cardinal is the least cardinal κ such that κ → (α)<ω.
We denote such a κ, if it exists, by κ(α).

Erdös cardinals can be characterized in terms of indiscernibles. Namely,

Lemma 17.1 (J. H. Silver). For α ≥ ω, we have κ → (α)<ω iff for every
structure M in a countable language with κ ⊆M , there is a set X ⊆ κ of order-
type α of M-indiscernibles. i.e., for every formula ϕ(x1, ..., xn) in the language
of M , and every α1 < ... < αn and β1 < ... < βn in X,

M |= ϕ(α1, ..., αn) iff M |= ϕ(β1, ..., βn).

Proof. Let {ϕn : n < ω} be an enumeration of all the formulas of the
language of M so that ϕn has at most n free variables. Let f : [κ]<ω → 2 be
given by: f(α1, ..., αn) = 0 iff M |= ϕn(α1, ..., αin). Then any f -homogeneous set
of order-type α is a set of M -indiscernibles.

Conversely, if f : [κ]<ω → 2 and X is a set of indiscernibles for the structure
〈κ,∈, f � [κ]n〉n∈ω, then X is f -homogeneous. �

How large are Erdös cardinals? It is not very hard to see that κ(ω) is Π1
1-

describable and so it is not weakly-compact. It can be shown, however, that
κ(ω) is inaccessible. Even though κ(ω) itself has not very strong large-cardinal
properties, there are very large cardinals below it.

Theorem 17.2 (Reinhardt and Silver). There is a totally indescribable car-
dinal below κ(ω).

Proof. Let κ = κ(ω). Let W be a well-ordering of Vκ and I a set of ω
indiscernibles for 〈Vκ,∈ W 〉. Let N ≺ Vκ be the Skolem hull of I in Vκ with

28
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respect to Skolem functions defined with W . Let N̄ be the transitive collapse
of N and let π be the inverse collapsing isomorphism. Since κ is inaccessible,
N̄ |= ZFC. Let f : I → I be any order-preserving injection which is not the
identity. f induces an elementary embedding j : N̄ → N̄ which is not the
identity. Let λ be the critical point of the embedding. It will be enough to show
that N̄ |= “λ is totally indescribable”, for then π(λ) is totally indescribable in
N , hence in Vκ.

So, suppose ϕ is Πm
n , some m,n. Suppose that

N̄ |= (A ⊆ Vλ ∧ 〈Vλ,∈, A〉 |= ϕ)

Then,
N̄ |= ∃α < j(λ)(〈Vα,∈, j(A) ∩ Vα〉 |= ϕ)

By elementarity,
N̄ |= ∃α < λ(〈Vα,∈, A ∩ Vα〉 |= ϕ)

�

Proposition 17.3. If κ(ω) exists, then L |= “κ(ω) exists”.

Proof. Let κ = κ(ω). It is enough to show that κ satisfies κ → (ω)<ω

in L. So, suppose f : [κ]<ω → 2 belongs to L. Let T be the tree of finite
f -homogeneous increasing sequences. Clearly, T ∈ L. We have that f has an
infinite homogeneous set iff T is ill-founded. Now, T is ill-founded in V . Hence,
by absoluteness of ill-foundedness, T is ill-founded in L. �

Exercise 17.4. Prove the proposition above for every ordinal α < ωL1 .

Let us look now at κ(ωL1 ). The following consequence of the existence of κ(ωL1 )
follows from work of Rowbottom and Silver and shows, in particular, that the
ωL1 -Erdös cardinal does not exist in L, and therefore its existence implies V 6= L.

Theorem 17.5. If κ(ωL1 ) exists, then in L there are only countably-many
subsets of ω.

Proof. Let κ = κ(ωL1 ). Since |Lκ| = κ, let I be a set of indiscernibles for
Lκ of order-type ωL1 . Let M be the Skolem hull of I in Lκ constructed using the
definable canonical well-ordering of Lκ. Let N be the transitive collapse of M .
Thus N = Lλ, for some λ ≥ ωL1 , and so every constructible subset of ω is in N .
Let J be the image of I under the transitive collapse.

Every x ∈ N is the least (in the canonical well-ordering of N) such that
ϕ(x, α1, ..., αn), for some formula ϕ and some increasing sequence α1 < ... < αn
in J . Let 〈βn : n < ω〉 be an increasing enumeration of the first ω elements of J .
Since each m ∈ ω is definable, if x is a subset of ω so that x is the least such that
ϕ(x, α1, ..., αn), then by indiscernibility, for every m ∈ ω, m belongs to the least
x such that ϕ(x, α1, ..., αn) iff m belongs to the least x such that ϕ(x, β1, ...., βn).
Thus, every subset of ω that belongs to N is determined by a formula and a finite
initial sequence of the first ω indiscernibles of J . �
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Exercise 17.6. Prove the theorem above relativized to a subset of ω. Namely,

if a ⊆ ω and κ(ω
L[a]
1 ) exists, then there are only countably-many subsets of ω in

L[a].

Corollary 17.7. If κ(ω1) exists, then ω1 is an inaccessible cardinal in L[a],
for every a ⊆ ω.

Proof. Fix a ⊆ ω. We only need to show that ω1 is a limit cardinal in L[a].
So, towards a contradiction, suppose that λ is a cardinal in L and (λ+)L[a] = ω1.
Since λ is countable, let b ⊆ ω code a well-ordering of ω of order-type λ, so that in

L[a, b], λ is countable. Then ω
L[a,b]
1 = ω1, which contradicts the last exercise. �

18. 0]

Notice that to obtain the conclusion of Theorem 17.5 and the Corollary above
we only need that for some limit ordinal λ, Lλ has a set I of indiscernibles of
order-type ωL1 .

Equivalently, by taking the canonical Skolem hull of I in Lλ and then taking
the transitive collapse, we may also require that I generates Lλ, i.e., every element
of Lλ is definable in Lλ from a finite set of indiscernibles (see the proof of Theorem
17.5). Then any order-preserving injection f : I → I induces an elementary
embedding j : Lλ → Lλ.

It follows that if κ ∈ I is a cardinal in Lλ, then κ is totally indescribable in
Lλ.

Suppose now that there is a limit ordinal λ such that Lλ has an uncountable
set I of indiscernibles, a hypothesis that follows from the existence of κ(ω1) by
the same arguments as before. This hypothesis, weaker than the existence of
κ(ω1), is known as 0] exists.

It follows from work of Silver and Kunen that the existence of 0] is actually
equivalent to the existence of a non-trivial elementary embedding j : L→ L.

Furthermore, Silver showed that the existence of 0] implies that there is a club
class of indiscernibles for L, which generate L, and which contains all uncountable
cardinals in V . Hence, all such cardinals are totally indescribable in L.

19. Ultrafilters

Definition 19.1. A filter F on a set A is called an ultrafilter if for every
X ⊆ A, either X ∈ F or A−X ∈ F .

A filter F on A is called maximal if there is no filter on A that properly
contains F . i.e., if for every filter G on A, if F ⊆ G, then F = G.

Proposition 19.2. A filter F on A is maximal if and only if it is an ultra-
filter.



19. ULTRAFILTERS 31

Proof. If F is an ultrafilter, then it is clearly maximal, for the addition of
any new X ⊆ A to F would imply that X and its complement are both in F ,
and then X ∩ (A−X) = ∅ ∈ F .

Now suppose F is a maximal filter and X ⊆ A. Suppose that neither X nor
its complement belong to F . Then for every Y ∈ F we have X ∩ Y 6= ∅, for
otherwise Y ⊆ (A−X) and therefore A−X ∈ F . It follows that F ∪ {X} has
the finite intersection property, hence it can be extended to a filter G. But since
X ∈ G − F , F is not maximal. A contradiction. �

Theorem 19.3 (A. Tarski). Every filter can be extended to an ultrafilter.

Proof. Let F be a filter on some set A. Let P be the set of all filters on A
that contain F , ordered by ⊆. Then P is a partial ordering. If C is a chain in P,
then

⋃
C is also a filter on A, and therefore an upper bound of C in P. Hence

by Zorn’s Lemma P has a maximal element which, by the Proposition above, is
an ultrafilter. �

An ultrafilter F on a set A is called principal if and only if there exists a ∈ A
such that F = {X ⊆ A : a ∈ X}.

Exercise 19.4. Show that every filter on a finite set A is principal.

An example of a non-principal filter on ω is the Fréchet filter, which is the
set of all co-finite subsets of ω, i.e., {X ⊆ ω : ω − X is finite}. More generally,
if κ is an infinite cardinal, then the set of all subsets of κ whose complement has
cardinality less than κ is a filter.

We say that a family F of subsets of a set A has the finite-intersection property
if the intersection of any finite number of sets in F is non-empty. Clearly, every
filter has the finite intersection property.

If F ⊆ P(A) is non-empty and has the finite intersection property, then F
can be extended to a filter on A. Indeed, let F be the set of all subsets of A that
contain some finite intersection of sets from F . Then one can easily check that
F is a filter. (Exercise.)

19.1. κ-complete ultrafilters. Let κ be an infinite cardinal. A filter F on
a set A is called κ-complete if the intersection of less than κ-many elements of F
belongs to F . ω1-complete filters are also called σ-complete.

Note that every principal filter on a set A is κ-complete, for every κ. There
is no σ-complete non-principal filter on any countable set (Exercise). The filter
{X ⊆ ω1 : |ω1 −X| ≤ ℵ0} is σ-complete. More generally, for every uncountable
regular cardinal κ, the filter {X ⊆ κ : |κ −X| < κ} is κ-complete. The filter of
subsets of [0, 1] of Lebesgue measure 1 is σ-complete.

A natural question is if there exists a σ-complete non-principal ultrafilter on
some set A, equivalently on some cardinal κ.
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Proposition 19.5. Suppose λ ≤ κ are infinite cardinals. An ultrafilter F on
κ is λ-complete if and only if for every partition {Xα : α < µ} of κ, where µ < λ,
there exists α such that Xα ∈ F .

Proof. ⇒. Suppose {Xα : α < µ}, some µ < λ, is a partition of κ. If none
of the Xα’s is in F , then κ −Xα ∈ F , for all α < µ. Hence by λ-completeness,⋂
α<µ(κ−Xα) = ∅ ∈ F , which is impossible.
⇐. By induction on λ. So assume F is λ-complete and let us show that it is

λ+-complete.
Given {Xα : α < λ} ⊆ F , let Y0 = X0, let Yα+1 = Yα ∩Xα+1, and for α limit

let Yα =
⋂
β<α Yβ. By the inductive assumption, all Yα belong to F .

Now let Zα = Yα − Yα+1. Thus,

{κ−X0} ∪ {Zα : α < µ} ∪ {
⋂
α<µ

Yα}

is a partition of κ.
Since X0 ∈ F , κ − X0 6∈ F . And Zα 6∈ F for all α, because κ − Zα =

κ− (Yα − Yα+1) = (κ− Yα) ∪ Yα+1 ∈ F . Hence by our assumption,⋂
α<µ

Yα =
⋂
α<µ

Xα ∈ F .

�

Exercise 19.6. Show that if U is a κ-complete ultrafilter on κ and
⋃
α<λXλ ∈

U , where λ < κ, then Xα ∈ U for some α < λ.

Proposition 19.7. If κ is the least cardinal for which there exists a non-
principal σ-complete ultrafilter F on κ, then F is in fact κ-complete.

Proof. Notice that the assumption implies κ is uncountable. So, suppose,
to the contrary, that {Xα : α < λ}, some infinite cardinal λ < κ, is a partition of
κ such that Xα 6∈ F , for all α < λ. Then define the filter G on λ as follows

X ∈ G if and only if
⋃
α∈X

Xα ∈ F .

G is non-principal, for if α < λ is such that G = {X ⊆ λ : α ∈ X}, then {α} ∈ G,
and therefore Xα ∈ F , which is impossible.

We claim that G is an ultrafilter, for if X ⊆ λ is not in G, then
⋃
α∈X Xα 6∈ F .

And since F is an ultrafilter this implies

κ−
⋃
α∈X

Xα =
⋂
α∈X

(κ−Xα) =
⋂
α∈X

⋃
β 6=α

Xβ =
⋃

α∈(λ−X)

Xα ∈ F

hence λ−X ∈ G.
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Suppose now that {Yn : n < ω} ⊆ G. Then,
⋃
α∈Yn Xα ∈ F , for every n.

Since F is σ-complete, ⋂
n<ω

⋃
α∈Yn

Xα =
⋃

α∈
⋂
n<ω Yn

Xα ∈ F

and so
⋂
n<ω Yn ∈ G. �

20. Measurable cardinals

A uncountable cardinal κ is called measurable if there exists a κ-complete
non-principal ultrafilter on κ.

By Proposition 19.7, if κ is the least cardinal on which there exists a σ-
complete non-principal ultrafilter, then κ is measurable.

We say that a filter F on a cardinal κ is uniform if everyX ∈ F has cardinality
κ.

Proposition 20.1. Every κ-complete non-principal ultrafilter on κ is uni-
form.

Proof. Suppose U is a κ-complete non-principal ultrafilter on κ and assume,
to the contrary that X ∈ U has cardinality λ, for some λ < κ. Since U is non-
principal, for every α ∈ X, there exists Xα ∈ U such that α 6∈ Xα. Hence by κ-
completeness, Y :=

⋂
α<λXα ∈ U . But then X ∩Y = ∅, which is impossible. �

We will see that measurable cardinals are very large.

Proposition 20.2. Every measurable cardinal is inaccessible.

Proof. First notice that an infinite cardinal κ is regular if and only if it
cannot be partitioned into less than κ-many subsets, each of size less than κ.
Now suppose κ is measurable and let U be a κ-complete non-principal ultrafilter
on κ. By Proposition 19.5 every partition of κ into less than κ-many sets, contains
an element in U , which by Proposition 20.1 must have size κ.

It only remains to show that κ is a strong limit. So suppose, to the contrary,
that 2λ ≥ κ, for some λ < κ. Thus, there exists a set S = {fα : α < κ}, where
fα : λ→ 2 for all α < κ.

Let U be a κ-complete non-principal ultrafilter on κ. For each β < λ, let
Xβ = {α : fα(β) = 0}. Then let εβ be either 0 if or 1 according to whether
Xβ ∈ U or Xβ 6∈ U . Then by κ-completeness of U , the intersection

⋂
β<λXβ is

in U . But this intersection contains exactly one element, namely the function f
such that f(β) = εβ, and this is impossible because U is non-principal. �

20.1. Normal ultrafilters. A filter on a regular uncountable cardinal is
called normal if it is closed under diagonal intersections. Thus, Proposition 9.4
shows that Club(κ) is normal.
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Exercise 20.3. Show that, for κ regular and uncountable, the κ-complete
filter F = {X ⊆ κ : |κ−X| < κ} is not normal.

Show that every principal filter on κ is normal.

Exercise 20.4. Show that if U is a κ-complete non-principal ultrafilter on κ,
then for every α < κ, the tail set Cα := {β < κ : α < β} belongs to U .

Proposition 20.5. If F is a normal filter on κ such that all the tail sets
Cα := {β < κ : α < β}, for α < κ, belong to F , then every club subset of κ
belongs to F . Hence, every element of F is stationary.

Proof. First note that the club set D of limit ordinals smaller than κ belongs
to F , because D = ∆α<κCα+1. Suppose now that A is club, and let {xα : α < κ}
be its increasing enumeration. Then D ∩∆α<κCxα ⊆ A. �

Proposition 20.6. A filter F on a regular uncountable cardinal κ is normal
if and only if for every regressive function f on a set S 6∈ F ∗ there exists S ′ 6∈ F ∗
contained in S on which f is constant.

Proof. Suppose F is normal. Then we argue as in the proof of the Pressing-
Down Lemma. Suppose, towards a contradiction, that for every α < κ, the set
{β ∈ S : f(β) = α} belongs to F ∗. So let Cα ⊆ κ be in F and disjoint form
the set. Thus, f(β) 6= α for every β ∈ S ∩ Cα. Now let C = ∆α<κCα. Then
S ∩ C 6= ∅ and if β ∈ S ∩ C, then f(β) 6= α for all α < β, contradicting the fact
that f is regressive on S.

For the converse, suppose 〈Xα : α < κ〉 be a sequence of sets in F . If
∆α<κXα 6∈ F , then the complement, call it S, does not belong to F ∗. Let
f : S → κ be so that f(α) is some ordinal β < α such that α 6∈ Xβ. Let S ′ 6∈ F ∗
be contained in S and on which f is constant, say with value β. Then Xβ∩S ′ = ∅,
which is impossible. �

Thus if U is an ultrafilter on a regular uncountable cardinal κ, then U is
normal if and only in for every regressive function f on a set S ∈ U there exists
S ′ ∈ U contained in S on which f is constant.



Lecture III

21. Elementary embeddings

If N and M are structures for the language of set theory, a function j :
N → M is an elementary embedding if for every formula ϕ(x1, ..., xn) and every
a1, ..., an ∈ N ,

N |= ϕ(a1, ..., an) iff M |= ϕ(j(a1), ..., j(an)).

Suppose now that M ⊆ N are models of ZFC, with N transitive, and j : N →
M is an elementary embedding which is not the identity. Then there is a least
ordinal α that is moved by j. To see this, let x be a set in N of least rank such
that j(x) 6= x. Let α = rank(x). Since the elements of x have rank smaller than
α, x ⊆ j(x). So there is y ∈ j(x) \ x. But then α ≤ rank(y), since otherwise
j(y) = y ∈ j(x), and therefore by elementarity of j, y ∈ x, which is not the case.
Thus, α ≤ rank(y) < rank(j(x)) = j(α).

The least ordinal α moved by j is called the critical point of j, denoted by
crit(j).

Proposition 21.1. If α = crit(j), then α is an inaccessible cardinal in N .

Proof. Let us show that α is a cardinal. Otherwise, there is β < α and
a bijection f : β → α. But then, by elementarity, j(f) : β → j(α) is also a
bijection, which is impossible because f(γ) = j(f)(γ) for all γ < β. Similar
arguments show that α is regular and strong limit. �

22. The ultrapower construction

Given an ultrafilter U on some cardinal κ we can form the ultrapower of V
by U , denoted by Ult(V,U), as follows.

Let V κ be the proper class of all κ-sequences of sets. We define an equivalence
relation ≡U on V κ by:

f ≡U g if and only if {α < κ : f(α) = g(α)} ∈ U .
Since the equivalence classes [f ] are proper classes, we redefine

[f ] := {g : g ≡U f and ∀h(h ≡U f → rank(g) ≤ rank(h))}
which is a set.

Now define a relation EU on V κ/ ≡U by:

35
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[f ]EU [g] if and only if {α < κ : f(α) ∈ g(α)} ∈ U .
The ultrapower Ult(V,U) is defined as 〈V κ/ ≡U , EU〉.
It is not hard to check ( Loś Theorem) that

Ult(V,U) |= ϕ([f1], . . . , [fn]) iff {α < κ : ϕ(f1(α), . . . , fn(α))} ∈ U .

If ϕ is a sentence in the language of set theory, then Ult(V,U) |= ϕ if and
only if V |= ϕ. Thus, V and Ult(V,U) are elementarily equivalent.

For each x, let cx be the function on κ with constant value x. Then, the map
j : V → Ult(V,U) given by j(x) = [cx] is an elementary embedding.

Proposition 22.1. If U is σ-complete, then Ult(V,U) is well-founded.

Proof. First notice that for every [f ] ∈ Ult(V,U), the collection of all [g]
such that [g]EU [f ] is a set, because for each such g there is h ∈ [g] with rank(h) ≤
rank(f).

Now suppose, towards a contradiction, that there is an infinite descend-
ing chain [fn+1]EU [fn]. For each n, let Xn ∈ U witness [fn+1]EU [fn]. By σ-
completeness, there is α ∈

⋂
n<ωXn. But then, fn+1(α) ∈ fn(α), for all n, thus

giving an infinite descending ∈-chain, which is impossible. �

23. Measurable cardinals and elementary embeddings

Theorem 23.1 (Keisler and Scott, 1961). κ is measurable if and only if
there exists an elementary embedding j : V → M , with M transitive, such that
κ = crit(j).

Proof. Suppose first that κ is measurable, and let U be a κ-complete non-
principal ultrafilter over κ. Let jU : V → Ult(V,U) be the corresponding el-
ementary embedding. The ultrapower Ult(V,U) is well-founded, so there is a
Mostowski collapse class isomorphism π : Ult(V,U) → M , with M transitive.
Then the embedding j := π ◦ jU : V →M is elementary, so we only need to check
that κ = crit(j).

Let γ < κ and assume j(β) = β for all β < γ. If γ < j(γ), then [f ]EU [cγ],
for some f such that π([f ]) = γ. So the set {α < κ : f(α) ∈ γ} is in U , hence
since U is κ-complete, f has constant value some β < γ on a set in U . But then
[f ] = [cβ], and so γ = π([f ]) = π([cβ]) = j(β) = β, which is impossible. This
shows j is constant below κ. Now let id be the identity function on κ. Clearly,
[cβ]EU [id]EU [cκ], for all β < κ. Thus, β = j(β) < π([id]) < j(κ), for all β < κ.
Hence, κ < j(κ).

For the converse, suppose j : V → M is an elementary embedding, with M
transitive, and with κ = crit(j). Define U as follows:

X ∈ U iff X ⊆ κ and κ ∈ j(X).



23. MEASURABLE CARDINALS AND ELEMENTARY EMBEDDINGS 37

It is easy to see that U is an ultrafilter over κ. Notice that for every α < κ,
j({α}) = {α}, and so U is non-principal. Let us check it is κ-complete. So let
{Xα : α < β} ⊆ U , some β < κ, and let X :=

⋂
α<βXα. Then,

κ ∈
⋂
α<β

j(Xα) =
⋂

α<j(β)

j(Xα) = j(
⋂
α<β

Xα) = j(X)

and so X ∈ U . �

Let us observe that the ultrafilter U defined at the end of the last proof is
normal. For suppose {Xα : α < κ} ⊆ U . Recall that ∆α<κXα is defined as the
set {α < κ : α ∈

⋂
β<αXβ}. So,

κ ∈ {α < j(κ) : α ∈
⋂
β<α

j(Xβ)} = j(∆α<κXα)

and so ∆α<κXα ∈ U .

Suppose U is a κ-complete non-principal ultrafilter on κ, and let j : V →
M ∼= Ult(V,U) be the corresponding ultrapower embedding. Then

(1) Mκ ⊆M .
(2) U 6∈M
(3) 2κ < j(κ) < (2κ)+

Note that (1) implies that Vκ+1 ⊆M , and (2) implies that M 6= V .

Theorem 23.2. If κ is measurable, then κ is weakly compact.

Proof. Fix a partition f : [κ]2 → 2. Let U be a κ-complete, non-principal,
normal ultrafilter on κ. For each α < κ, let fα : [κ]1 → 2 be given by: fα(β) =
f({α, β}). Since U is an ultrafilter, for each α < κ there is Xα ∈ U that is
fα-homogeneous, with constant value iα. Let X := ∆{Xα : α < κ}. Since U is
normal, X ∈ U . If α, β ∈ X and α < β < κ, then β ∈ Xα, and so f({α, β}) = iα.
Let i ∈ {0, 1} and H ⊆ X, H ∈ U , be such that iα = i for all α ∈ H. Then
f({α, β}) = i for all α, β ∈ H. �

If U is an ultrafilter on a regular uncountable cardinal κ, then U is normal if
and only in for every regressive function f on a set S ∈ U there exists S ′ ∈ U
contained in S on which f is constant.

Also recall that if U is a κ-complete and normal non-principal ultrafilter over
κ, then it contains all club subsets of κ, and therefore every element of U is
stationary.

Now suppose U is a normal κ-complete non-principal ultrafilter over κ. In
Ult(V,U), suppose [f ]EU [id]. Then f is regressive on a set in U . Hence, it is
constant on a set in U , and so [f ] = [cα], for some α < κ.

Also, clearly [cα]EU [id], for all α < κ. Thus, we must have κ = π([id]).
So suppose κ is measurable and U is a κ-complete non-principal ultrafilter on

κ which is normal. Let j : V →M be the corresponding ultrapower embedding.
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Since Vκ+1 ⊆ M , and since κ is weakly compact in V , we have that κ is also
weakly compact in M . But since U is normal, κ = π([id]). Hence, in Ult(V,U),
[id] is weakly compact. It follows that the set of weakly compact cardinals smaller
than κ belongs to U , and so it is stationary.

24. Strong cardinals

Recall that a measurable cardinal exists iff there exists a Σ1-elementary (hence
fully elementary) embedding j : V → M , some M transitive, which is non-
trivial, i.e., not the identity. The measurable cardinal is the critical point of the
embedding, which we denote by c.p.(j).

A word of caution: Notice that the sentence There exists an embedding from
V into M is refutable in ZF, since V is a proper class. So, what is going on is the
following: given κ measurable, i.e., given a κ-complete non-principal ultrafilter U
over κ, we can define from U an elementary embedding from V into a transitive
class M . And conversely, from a definable (with parameters) such an embedding
with critical point κ, we can define a normal κ-complete ultrafilter on κ, which
is, of course, a set. Thus, when we say that There is measurable cardinal is
equivalent to There exists a non-trivial elementary embedding j : V → M , M
transitive, we are not asserting that this equivalence is provable in ZFC, as when
we say that There is an inaccessible cardinal is equivalent to There exists a regular
cardinal κ such that Vκ ≺1 V .

For conciseness, whenever we write j : V → M we will always assume that j
is a definable (with parameters) Σ1-elementary embedding and M is a definable
(with parameters) transitive class.

If j : V →M and c.p.(j) = κ, then the set

U = {X ⊆ κ : κ ∈ j(X)}

is a normal κ-complete ultrafilter on κ. If MU is the associated (transitive collapse
of the) ultrapower and jU : V →MU is the corresponding elementary embedding,
then there is an elementary embedding k : MU →M such that j = k◦jU . Namely,
k([f ]) = (j(f))(κ). Thus, if there is an j : V → M at all, with critical point κ,
then there is one that comes from a normal κ-complete ultrafilter on κ.

We have seen that if j : V → M is the embedding that comes from a κ-
complete ultrafilter on κ, then Vκ+1 ⊆ M . On the other hand, Kunen’s theorem
shows that there cannot be any j : V → V , other than the identity. Thus, the
closer M is to V , the stronger, i.e., closer to inconsistency, is the hypothesis of
the existence of a non-trivial j : V → M . This opens the door to large cardinal
hypotheses stronger than measurability.

Definition 24.1. (Gaifman, 1974) Let γ be an ordinal. A cardinal κ is
γ-strong if there exists j : V →M with c.p(j) = κ and Vκ+γ ⊆M .
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Thus, κ is measurable iff it is 0-strong iff it is 1-strong. Since every ultrafilter
on κ belongs to Vκ+2, if κ is 2-strong, then κ is measurable in M and, therefore,
there is a measure-1 set of measurable cardinals below κ.

Definition 24.2. κ is strong iff it is γ-strong for every γ.

For κ a γ-strong cardinal, witnessed by j : V →M , there are two possibilities:

(1) γ < j(κ)
(2) j(κ) ≤ γ

In case (2) we have Vj(κ) ⊆ M , and we say that κ is superstrong, a large-
cardinal notion which has a much higher consistency strength (see Appendix 1)
than a strong cardinal. So, whenever we talk about γ-strong cardinals, we will
always assume that (1) is the case.

We have also seen that if j : V →M comes from a κ-complete ultrafilter U on
κ, then U 6∈M . So, suppose that κ is 2-strong, and j : V →M is the embedding
that witnesses it. Then j cannot come from a κ-complete ultrafilter on κ, since
any such ultrafilter belongs to Vκ+2 ⊆M .

Thus, if κ is strong, then there are ever stronger embeddings with critical
point κ, but for γ ≥ 2, they cannot come from κ-complete ultrafilters on κ.

Exercise 24.3. Show that if κ is strong, then V 6= L[A] for every set A.
(Hint: use an argument as in Scott’s proof that the existence of a measurable
cardinal implies V 6= L.)

Observe that the definitions of γ-strong and strong cardinals have been given
in terms of the existence of elementary embeddings of V into a transitive class.
But since for γ ≥ 2 these embeddings cannot come from ultrafilters on κ, for these
definitions to make sense in ZFC we need to find equivalent formulations in terms
of the existence of some sets, so that the corresponding elementary embeddings
are definable from those sets. This is possible, but we shall not do it here.

25. Strongly compact cardinals

An uncountable cardinal κ is called strongly compact if for every set I, every
κ-complete filter on I can be extended to a κ-complete ultrafilter on I.

Thus, since for κ regular the filter consisting on all subsets of κ whose comple-
ment has cardinality less than κ is κ-complete and non-principal, every strongly
compact cardinal is measurable.

Definition 25.1. If δ ≤ κ are uncountable cardinals, we say that κ is δ-
strongly compact if for every set I, every κ-complete filter on I can be extended
to a δ-complete ultrafilter on I. Thus, κ is strongly-compact iff it is κ-strongly
compact.

Notice that if κ is δ-strongly compact and λ is a cardinal greater than κ,
then λ is also δ-strongly compact. Also note that if κ is regular and ω1-strongly
compact, then there exists a measurable cardinal less or equal than κ.
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Suppose κ is δ-strongly compact. Let I be any non-empty set, and for every
a ∈ I, let Xa = {x ∈ Pκ(I) : a ∈ x}, where Pκ(I) = {x ⊆ I : |x| < κ}. If
κ is regular, then the set {Xa : a ∈ I} generates a κ-complete filter on Pκ(I),
which can be extended to a δ-complete ultrafilter on Pκ(I). Such an ultrafilter
U is called a δ-complete fine measure on Pκ(I). The fineness condition is that
Xa ∈ U for all a ∈ I.

We have the following characterizations of δ-strong compactness.

Proposition 25.2. The following are equivalent for any uncountable cardi-
nals δ ≤ κ:

(1) κ is δ-strongly compact.
(2) For every α greater or equal than κ there exists an elementary embedding

j : V → M , with M transitive, and critical point greater or equal than
δ, such that j is definable in V , and there exists D ∈ M such that
j′′α := {j(β) : β < α} ⊆ D and M |= |D| < j(κ).

(3) For every set I there exists a δ-complete fine measure on Pκ(I).

Proof. (1)⇒(2): Assume κ is δ-strongly compact, and fix α ≥ κ. Suppose U
is a δ-complete fine measure on Pκ(α). If jU : V → Ult(V,U) is the correspond-
ing ultrapower embedding, then since U is δ-complete Ult(V,U) is well-founded,
hence isomorphic to a transitive M . Moreover, by δ-completeness, the critical
point of jU is greater than or equal to δ. Let π : Ult(V,U)→M be the transitive
collapsing map, and let j = π ◦ jU . We claim that j satisfies the conditions of
(2). For let D := π([Id]U), where Id : Pκ(α) → V is the identity map. Thus
D ∈ M and, by fineness, j′′α ⊆ D. Clearly, Ult(V,U) |= |[Id]U | < jU(κ), hence
M |= |D| < j(κ).

Thus, to prove (2) it will be enough to find, for every α ≥ κ, a δ-complete fine
measure on Pκ(α). Notice that if κ ≤ β < α and U is a δ-complete fine measure
on Pκ(α), then the projection

{X ⊆ Pκ(β) : {Y ∈ Pκ(α) : Y ∩ β ∈ X} ∈ U}

is a δ-complete fine measure on Pκ(β). So fix α ≥ κ and assume, without loss of
generality, that α is regular.

If κ is regular, then we have already observed above that a δ-complete fine
measure on Pκ(α) does exist. So suppose κ is singular. Then κ+ is regular and
also δ-strongly compact. So let U∗ be a δ-complete fine measure on Pκ+(α), and
let jU∗ : V → Ult(V,U∗) be the ultrapower embedding, π : Ult(V,U∗) ∼= M the
transitive collapse, and j := π ◦ jU∗ . Note that the critical point of j is greater
than or equal to δ. Letting D := π([Id]U∗), where Id : Pκ+(α)→ V is the identity
map, we have that D ∈M , j”α ⊆ D, and M |= “|D| < j(κ+) = j(κ)+”.

Let β = sup(j”α). So, β ∩D is cofinal in β. Hence, in M , the cofinality of β
is at most j(κ). And in fact, since M |= “j(κ) is singular”, cof(β) < j(κ).
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In M , let C be a closed unbounded subset of cof(β). Observe that j”α is an
ω-closed subset of β. So, since cof(β) is uncountable, C ∩ j”α is unbounded in
β. Hence, I := {γ < α : j(γ) ∈ C} is unbounded in α, and so |I| = α.

Now define an ultrafilter U on Pκ(I) as follows:

X ∈ U if and only if X ⊆ Pκ(I) and j∗(I) ∩ C ∈ j∗(X).

One can readily check that U is a δ-complete fine measure on Pκ(I) which, since
|I| = α, naturally induces a δ-complete fine measure on Pκ(α).

(2)⇒(3): Without loss of generality, we may assume I is some ordinal α
greater than or equal to κ. Given j : V →M and D as in (2), for α, define U in
V by:

X ∈ U if and only if X ⊆ Pκ(α) and D ∈ j(X).

Since M |= |D| < j(κ), U is well-defined. It is easy to check that U is an
δ-complete fine measure on Pκ(α).

(3)⇒(1): Suppose F is a κ-complete filter over some set I. We may assume
that F is actually a filter over α = |I|. Let U be a δ-complete fine measure on
Pκ(F ), and let j : V → M ∼= Ult(V,U) be the corresponding ultrapower embed-
ding, with M transitive. Let π : Ult(V,U)→M be the transitive collapsing map,
and set D = π([Id]U). By fineness, j′′F ⊆ D. And clearly M |= |D| < j(κ).

In M , j(F ) is j(κ)-complete. So there exists a ∈
⋂

(j(F ) ∩ D). Let V be
given by:

X ∈ V if and only if X ⊆ α and a ∈ j(X).

It is easy to see that V is a δ-complete ultrafilter on α. And it contains F , for if
X ∈ F , then j(X) ∈ D ∩ j(F ), and therefore a ∈ j(X). �

If λ is the least measurable cardinal and κ is ω1-strongly compact, κ not
necessarily regular, then κ is λ-strongly compact. For if U is a ω1-complete
ultrafilter on a set I that is not λ-complete, then there is a partition {Xα : α < β}
of I, some β < λ, such that none of the Xα belongs to U . But then the set
{X ⊆ β :

⋃
{Xα : α ∈ X} ∈ U} is a non-principal ω1-complete ultrafilter on β,

contradicting the minimality of λ.
Thus if κ is ω1-strongly compact and is also the first measurable, a consistent

situation as shown by Magidor, then κ is in fact strongly compact.



Lecture IV

26. Supercompact cardinals

In the spirit of extending naturally the notion of measurable cardinal, as given
by an elementary embedding form V into some transitive class M , by requiring
that M is close to V , one has the following notion of large cardinal.

Definition 26.1 (Solovay, Reinhardt). Let γ be an ordinal. A cardinal κ is
γ-supercompact if there exists j : V →M with c.p.(j) = κ and Mγ ⊆M .

It can be shown (see [2], p. 323) that if κ is γ-supercompact, say witnessed
by j : V →M , then for some n < ω, the nth-iterate of j, call it jn, also witnesses
the γ-supercompactness of κ and, moreover, γ < jn(κ). Thus, we may, and will,
require in the defintion of γ-supercompactness that γ < j(κ).

Thus, κ is measurable iff it is γ-supercompact for some (for all) γ < κ+.
Suppose that κ is 2κ-supercompact, witnessed by j : V → M . Let U be the

ultrafilter derived from j, i.e., X ∈ U iff X ⊆ κ and κ ∈ j(X). Since M2κ ⊆ M ,
U ∈ M . Hence, κ is measurable in M and, therefore, the set of measurable
cardinals below κ belongs to U .

Definition 26.2. κ is supercompact if it is γ-supercompact for all γ.

We will later see that supercompactness is a very strong large cardinal notion,
in particular, if κ is supercompact, then there are many λ < κ such that in Vλ
there is a proper class of measurable cardinals.

If j : V → M witnesses that κ is κ+-supercompact, then since j′′κ+ 6∈ M ,
j cannot come from a κ-complete ultrafilter on κ. And conversely, if j : V →
M comes from a κ-complete ultrafilter on κ, then j does not witness the κ+-
supercompactness of κ.

Since we have defined the notion of γ-supercompactness only in terms of
elementary embeddings of the universe into a transitive class, we want now to
find, as in the case of measurable cardinals, an equivalent formulation in terms of
the existence of some sets so that the corresponding elementary embeddings will
be definable from those sets. In the case of a measurable cardinal κ, the sets were
ultrafilters on κ. Now we know the embeddings cannot come (for γ ≥ κ+) from
ultrafilters on κ, but perhaps they may come from ultrafilters on some other set.

42
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Proposition 26.3. Suppose U is a σ-complete ultrafilter over a set A and
j : V → M is the corresponding elementary embedding. Then for every ordinal
γ, j′′γ ∈M iff Mγ ⊆M .

Recall that if κ is measurable and j : V → M has critical point κ, then
j′′κ = κ and Mκ ⊆ M . Then we defined the ultrafilter associated to j as the
collection of all X ⊆ κ such that κ ∈ j(X). So, now suppose j : V →M witnesses
the γ-supercompactness of κ. Since Mγ ⊆M , it seems only natural to define an
ultrafilter associated to j, call it U , as:

X ∈ U iff X ⊆ [γ]κ and j′′γ ∈ j(X).

The following can be easily checked:

Proposition 26.4.

(1) U is a κ-complete ultrafilter on [γ]<κ := {X ⊆ γ : |X| < κ}.
(2) U is fine, i.e., for every α < γ, {X ∈ [γ]<κ : α ∈ X} ∈ U .
(3) U is normal, i.e., if 〈Xα : α < γ〉 is a sequence of sets from U , then its

diagonal intersection ∆α<γXα := {x : x ∈
⋂
α∈xXα} belongs to U .

Proof. (1): First notice that since γ < j(κ), j′′γ ∈ j([γ]<κ) = ([j(γ)]<j(κ))M ,
and so [γ]<κ ∈ U . The rest is straightforward.

(2): Need to check that j′′γ ∈ j({X ∈ [γ]<κ : α ∈ X}) = {X ∈ [j(γ)]<j(κ) :
j(α) ∈ X}. But since γ < j(κ), this is obvious.

(3): Need to check that j′′γ ∈ j({x ∈ [γ]<κ : x ∈
⋂
α∈xXα}) = {x ∈

[j(γ)]<j(κ) : x ∈
⋂
α∈x j(Xα)}. Since γ < j(κ), this is obvious. �

Exercise 26.5. Show that if U is as above and j : V → M is the associated
elementary embedding, then [id] = j′′γ. Hence, for every function f on [γ]<κ,
[f ] = (j(f))(j′′γ).

Exercise 26.6. Show that if U is a fine measure on [γ]<κ, then U is normal
iff whenever f : [γ]<κ → V is such that f(X) ∈ X for almost all X, then f is
constant for almost all X. (Hint: Use the same argument as for measures on a
cardinal κ. Fineness plays the role in this case as the fact that, in the case of
measures on κ, final segments have measure 1.)

Definition 26.7. A supercompact measure on [γ]κ is a κ-complete, fine and
normal ultrafilter on [γ]<κ.

Theorem 26.8. If κ ≤ γ, then κ is γ-supercompact iff there is a supercompact
measure on [γ]κ.

Proof. We have just proved one direction, namely, if j : V → M witnesses
the γ-supercompactness of κ, then U = {X ⊆ [γ]<κ : j′′γ ∈ j(X)} is a supercom-
pact measure.

Conversely, if U is a supercompact measure on [γ]κ, let j = jU : V →M be the
associated elementary embedding. Let us first check that j(κ) > γ. Let f be the
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function that assigns to every element of [γ]<κ its order type, i.e., f(X) = o.t.(X).
We have (see Exercise 26.5) that [f ] = (j(f))(j′′γ) = o.t.(j′′γ) = γ. Hence, since
o.t.(X) < κ for all X ∈ [γ]<κ, we have γ < j(κ).

To see that Mγ ⊆M it is enough to show, by Proposition 26.3, that j′′γ ∈M .
For each α < γ, let fα : [γ]<κ → OR be such that j(α) = [fα]. Let now f
be the function with domain [γ]<κ given by: f(X) = {fα(X) : α ∈ X}. We
claim that [f ] = j′′γ. By fineness of U , for every α < γ, α ∈ X for almost all
X ∈ [γ]<κ. Hence, for almost all X, fα(X) ∈ f(X), and so [fα] ∈ [f ]. On the
other hand, if [g] ∈ [f ], then g(X) ∈ f(X) for almost all X, and so for almost
all X, g(X) = fα(X) for some α ∈ X. By normality applied to the function
g′(X) = the α such that g(X) = fα(X) (see Exercise 26.6), there is α < γ such
that g(X) = fα(X) for almost all X, and so [g] = [fα] = j(α). �

Exercise 26.9. If U is a supercompact measure on [γ]κ, then U contains
every closed and unbounded subset of [γ]<κ.

If κ is supercompact, then Vκ ≺2 V .

The last theorem shows that if κ is supercompact, then it is strongly compact.
However, the converse is not true.

Theorem 26.10 (Magidor, 1976).

(1) If κ is supercompact, then there is a forcing extension of V in which κ
is supercompact and is also the least strongly compact cardinal.

(2) If κ is strongly compact, then there is a forcing extension of V in which
it is still strongly compact and is also the first measurable cardinal.

27. Extendible cardinals

A cardinal κ is λ–extendible if there is an elementary embedding j : Vλ → Vµ,
some µ, with critical point κ and such that j(κ) > λ. And κ is extendible if it is
λ–extendible for all λ > κ.

The next lemma implies that every extendible cardinal is supercompact.

Lemma 27.1 (M. Magidor). Suppose j : Vλ → Vµ is elementary, λ is a limit
ordinal, and κ is the critical point of j. Then κ is < λ-supercompact.

Proof. Fix γ < λ and define

Uγ = {X ⊆ Pκ(γ) : j′′γ ∈ j(X)}.

Note that this makes sense if j(κ) > γ, in which case it is easy to check that Uγ is
a κ-complete, fine, and normal measure. Otherwise, let j1 = j and jm+1 = j ◦jm.
If jm(κ) > γ for some m, then define Uγ using jm instead of j. But such an m does
exist, for otherwise δ := supm(jm(κ)) ≤ γ < λ, and then since j(δ) = δ we would
have j � Vδ+2 : Vδ+2 → Vδ+2 is elementary with critical point κ, contradicting
Kunen’s Theorem. �
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If κ is extendible, then the set of supercompact cardinals smaller than κ is
stationary.

28. Vopenka’s Principle

Vopěnka’s Principle (VP) (after Petr Vopěnka, circa 1960) states that for
every proper class C of structures of the same type, there exist A 6= B in C such
that A is elementarily embeddable into B.

VP can be formulated in the first-order language of set theory as an axiom
schema, i.e., as an infinite set of axioms, one for each formula with two free
variables. Formally, for each such formula ϕ(x, y) one has the axiom:

∀x[(∀y∀z(ϕ(x, y) ∧ ϕ(x, z)→ y and z are structures of the same type)∧
∀α ∈ OR ∃y(rank(y) > α ∧ ϕ(x, y))→

∃y∃z(ϕ(x, y) ∧ ϕ(x, z) ∧ y 6= z ∧ ∃e(e : y → z is elementary))].

Henceforth, V P will be understood as this axiom schema.
The theory ZFC plus VP implies, for instance, that the class of extendible car-

dinals is stationary, i.e., every definable club proper class contains an extendible
cardinal. And its consistency is known to follow from the consistency of ZFC
plus the existence of an almost-huge cardinal (see [2], or [1]).

28.1. The Hκ. Every set is contained in a smallest transitive set, called its
transitive closure. The transitive closure of a set A, denoted by TC(A) consists
of all elements of A, the elements of elements of A, the elements of elements of
elements of A, and so on.

For an infinite cardinal κ, Hκ is the set of all sets having transitive closure of
cardinality < κ. Thus, Hω = Vω. We always have Hκ ⊆ Vκ. But Hω1 6= Vω1 , as
e.g., P(ω) ∈ Vω+2 \Hω1 . Note that all Hκ are transitive.

Similarly as with the Vα, the Hκ also form a cumulative hierarchy: if κ ≤ λ,
then Hκ ⊆ Hλ, and if κ is a limit cardinal, then Hκ =

⋃
λ<κHλ. Finally, V =⋃

κ∈CARDHκ.
There is a closed proper class of cardinals C such that Vκ = Hκ, for every

κ ∈ C.
If κ is inaccessible, then Vκ = Hκ.

28.2. Variants of VP. Let us consider the following variants of VP, the
first one apparently much stronger than the second.

We say that a class C is Σn (Πn) if it is definable, with parameters, by a Σn

(Πn) formula of the language of set theory. If no parameters are involved, then
we use the lightface types Σn (Πn).

Definition 28.1. If Γ is one of Σn, Πn, some n ∈ ω, and κ is an infinite
cardinal, then we write V P (κ,Γ) for the following assertion:

For every Γ proper class C of structures of the same type τ such that both τ
and the parameters of some Γ-definition of C, if any, belong to Hκ, C reflects below
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κ, i.e., for every B ∈ C, there exists A ∈ C ∩Hκ that is elementarily embeddable
into B.

If Γ is one of Σn, Πn, or Σn, Πn, some n ∈ ω, we write V P (Γ) for the
following statement:

For every Γ proper class C of structures of the language of set theory with
one (equivalently, finitely-many) additional 1-ary relation symbol(s), there exist
distinct A and B in C with an elementary embedding of A into B.

VP for Σ1 classes is a consequence of ZFC. In fact, the following holds.

Theorem 28.2. If κ is an uncountable cardinal, then every (not necessarily
proper) class C of structures of the same type τ ∈ Hκ which is Σ1 definable, with
parameters in Hκ, reflects below κ. Hence, V P (κ,Σ1) holds for every uncountable
cardinal κ.

Proof. Fix an uncountable cardinal κ and a class C of structures of the same
type τ ∈ Hκ, definable by a Σ1 formula with parameters in Hκ.

Given B ∈ C, let λ be a regular cardinal greater than κ, with B ∈ Hλ, and let
N be an elementary substructure of Hλ, of cardinality less than κ, which contains
B and the transitive closure of {τ} together with the parameters involved in some
Σ1 definition of C.

Let A and M be the transitive collapses of B and N , respectively, and let
j : M → N be the collapsing isomorphism. Then A ∈ Hκ, and j � A : A → B
is an elementary embedding. Observe that j(τ) = τ . So, since Σ1 formulas are
upwards absolute for transitive models, and since M |= A ∈ C, we have that
A ∈ C. �

In contrast, Vopěnka’s Principle for Π1 proper classes implies the existence of
supercompact cardinals.

Theorem 28.3. If V P (Π1) holds, then there exists a supercompact cardinal.

Proof. Let C be the class of structures of the form 〈Vλ+2,∈, α, λ〉, where λ
is the least limit ordinal greater than α such that no κ ≤ α is < λ-supercompact.

We claim that C is Π1 definable without parameters. For X ∈ C if and only
if X = 〈X0, X1, X2, X3〉, where

(1) X2 is an ordinal
(2) X3 is a limit ordinal greater than X2

(3) X0 = VX3+2

(4) X1 =∈� X0

(5) And the following hold in 〈X0, X1〉:
(a) ∀κ ≤ X2(κ is not < X3-supercompact)
(b) ∀µ(µ limit ∧X2 < µ < X3 → ∃κ ≤ X2(κ is < µ-supercompact)).

If there is no supercompact cardinal, then C is a proper class. So by V P (Π1),
there exist 〈Vλ+2,∈, α, λ〉 6= 〈Vµ+2,∈, β, µ〉 and an elementary embedding

j : 〈Vλ+2,∈, α, λ〉 → 〈Vµ+2,∈, β, µ〉.
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Since j must send α to β and λ to µ, j is not the identity. Hence by Kunen’s
theorem we must have λ < µ, and therefore also α < β. So, j has critical point
some κ ≤ α. It now follows by Lemma 27.1 that κ is < λ-supercompact. But
this is impossible because 〈Vλ+2,∈, α, λ〉 ∈ C. �

We give next a strong converse to Theorem 28.3.

Theorem 28.4. Suppose that C is a Σ2 (not necessarily proper) class of struc-
tures of the same type τ , and suppose that there exists a supercompact cardinal κ
larger than the rank of the parameters that appear in some Σ2 definition of C, and
with τ ∈ Vκ. Then for every B ∈ C there exists A ∈ C ∩ Vκ that is elementarily
embeddable into B.

Proof. Fix a Σ2 formula ϕ(x, y) and a set b such that C = {B : ϕ(B, b)},
and suppose that κ is a supercompact cardinal with b ∈ Vκ. Fix B ∈ C, and let
λ ∈ C(2) be greater than rank(B). Let j : V → M be an elementary embedding
with M transitive and critical point κ, such that j(κ) > λ and M is closed under
λ-sequences. Thus, B and j � B : B → j(B) are in M , and also Vλ ∈ M . Hence
Vλ �1 M . Moreover, since j(τ) = τ , j(B) is a tructure of type τ , and j � B is an
elementary embedding.

Since Vλ �2 V , Vλ |= ϕ(B, b). And since Σ2 formulas are upwards absolute
between Vλ and M , M |= ϕ(B, b).

Thus, in M it is true that there exists X ∈ Mj(κ) such that ϕ(X, b), namely
B, and there exists an elementary embedding e : X → j(B), namely j � B.
Therefore, by elementarity, the same holds in V ; that is, there exists X ∈ Vκ
such that ϕ(X, b), and there exists an elementary embedding e : X → B. �

The following corollary gives a characterization of Vopěnka’s principle for Π1

and Σ2 classes in terms of supercompactness.

Corollary 28.5. The following are equivalent:

(1) V P (Π1).
(2) There exists a supercompact cardinal.

We shall give next a characterization of supercompactness in terms of a nat-
ural principle of reflection.

Recall from Definition 28.1 that a cardinal κ reflects a class of structures C
of the same type if for every B ∈ C there exists A ∈ C ∩Hκ which is elementary
embeddable into B.

Theorem 28.6 (Magidor [4]). If κ is the least cardinal that reflects the Π1

proper class C of structures of the form 〈Vλ,∈〉, then κ is supercompact.

Proof. For each λ greater than κ there is α < κ and an elementary embed-
ding

jλ : 〈Vα,∈〉 → 〈Vλ,∈〉.
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Let α be be the least ordinal for which there is such an embedding for a proper
class of limit λ. We may assume that the jλ are not the identity, for if they were
the identity for a proper class of λ, then Vα would be an elementary substructure
of V , which is impossible because α is definable. We may also assume that the
critical point of all these embeddings is the same, say β, and that β is the least
such. Moreover, we may assume that the image of β is always the same, for
otherwise for a proper class of λ the identity embedding jλ � Vβ would witness
that Vβ is an elementary substructure of Vjλ(β), with the jλ(β) forming a proper
class, which in turn would imply that Vβ is an elementary substructure of V , an
impossibility since β is definable.

So let δ be least such that for a proper class C of limit λ the α is the same, jλ is
not the identity, the critical point β is the same, and jλ(β) = δ. By Lemma 27.1,
β is < α-supercompact. Hence, by elementarity of the jλ, δ is < λ-supercompact
for all λ ∈ C, and therefore δ is supercompact. Thus δ ≥ κ, because δ reflects C,
by Theorem 28.4, and κ is the least cardinal that does this. So suppose, aiming
for a contradiction, that δ > κ. By Theorem 28.4, δ reflects the proper class of
structures of the form 〈Vλ,∈, γ〉, where λ is a limit ordinal and γ < λ, which is
Π1. So, similarly as before, there are fixed γ < α < κ and elementary embeddings
kλ : 〈Vα,∈, γ〉 → 〈Vλ,∈, κ〉, for a proper class of limit λ, all with the same critical
point, and whose image of the critical point is some fixed ordinal less or equal
than κ, contradicting the minimality of δ. �

The last two theorems yield the following characterizations of the first super-
compact cardinal.

Corollary 28.7. The following are equivalent:

(1) κ is the first supercompact cardinal.
(2) κ is the least ordinal that reflects the Π1 class of structures of the form
〈Vλ,∈〉, λ an ordinal.

29. The strongest large cardinals

A cardinal κ is called a Reinhardt cardinal if there exists an elementary em-
bedding j : V → V with critical point κ.

Theorem 29.1 (Kunen, 1971). Reinhardt cardinals don’t exist.

In fact, Kunen proves that there doesn’t exist any non-trivial elementary
embedding j : Vλ+2 → Vλ+2.

The existence of an elementary embedding j : Vλ+1 → Vλ+1 is one of the
strongest large cardinal principles not known to be inconsistent.
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